paraview.simple.TemporalParticlesToPathlines(*input, **params)

Particle Pathlines takes any dataset as input, it extracts the point locations of all cells over time to build up a polyline trail. The point number (index) is used as the ‘key’ if the points are randomly changing their respective order in the points list, then you should specify a scalar that represents the unique ID. This is intended to handle the output of a filter such as the TemporalStreamTracer.

Data Descriptors


Compute particle path lines when time goes backward.


Specify the name of a scalar array which will be used to fetch the index of each point. This is necessary only if the particles change position (Id order) on each time step. The Id can be used to identify particles at each step and hence track them properly. If this array is set to “Global or Local IDs”, the global point ids are used if they exist or the point index is otherwise.


The input cells for which to create pathlines.


Keep the trails of particles that leave the domain. Use carefully as it may cause excessive memory consumption when generating many particle trails.


Set the number of particles to track as a ratio of the input. Example: setting MaskPoints to 10 will track every 10th point.


If a particle disappears from one end of a simulation and reappears on the other side, the track left will be unrepresentative. Set a MaxStepDistance{x,y,z} which acts as a threshold above which if a step occurs larger than the value (for the dimension), the track will be dropped and restarted after the step. That is, the part before the wrap around will be dropped and the newer part kept.


If the particles being traced animate for a long time, the trails or traces will become long and stringy. Setting the MaxTraceTimeLength will limit how much of the trace is displayed. Tracks longer then the Max will disappear and the trace will appear like a snake of fixed length which progresses as the particle moves. This length is given with respect to timesteps.


Set a second input, which is a selection. Particles with the same Id in the selection as the primary input will be chosen for pathlines. Note that you must have the same IdChannelArray in the selection as the input.

Data Descriptors inherited from Proxy


dictionary for instance variables (if defined)


list of weak references to the object (if defined)


Initialize = aInitialize(self, connection=None, update=True)

Methods inherited from SourceProxy


Called when the filename of a source proxy is changed.


Returns the associated cell data information.

GetDataInformation(self, idx=None)

This method returns a DataInformation wrapper around a vtkPVDataInformation


Returns the associated cell data information.


Returns the associated point data information.

UpdatePipeline(self, time=None)

This method updates the server-side VTK pipeline and the associated data information. Make sure to update a source to validate the output meta-data.


This method updates the meta-data of the server-side VTK pipeline and the associated information properties

__getitem__(self, idx)

Given a slice, int or string, returns the corresponding output port

Methods inherited from Proxy

GetProperty(self, name)

Given a property name, returns the property object.

GetPropertyValue(self, name)

Returns a scalar for properties with 1 elements, the property itself for vectors.

InitializeFromProxy(self, aProxy, update=True)

Constructor. Assigns proxy to self.SMProxy, updates the server object as well as register the proxy in _pyproxies dictionary.


Returns a list of all property names on this proxy.

SetPropertyWithName(self, pname, arg)

Generic method for setting the value of a property.


Destructor. Cleans up all observers as well as remove the proxy from the _pyproxies dictionary

__eq__(self, other)

Returns true if the underlying SMProxies are the same.

__getattr__(self, name)

With the exception of a few overloaded methods, returns the SMProxy method


Return hash(self).

__init__(self, **args)

Default constructor. It can be used to initialize properties by passing keyword arguments where the key is the name of the property. In addition registrationGroup and registrationName (optional) can be specified (as keyword arguments) to automatically register the proxy with the proxy manager.


Creates an iterator for the properties.

__ne__(self, other)

Returns false if the underlying SMProxies are the same.

__setattr__(self, name, value)

Implement setattr(self, name, value).

add_attribute(self, name, value)

For the full list of servermanager proxies, please refer to Available readers, sources, writers, filters and animation cues