# DisplayQuadricSurfaces

vtk-examples/Cxx/Visualization/DisplayQuadricSurfaces

### Description¶

This example demonstrates how to display several types of quadric surfaces.

Other languages

See (Python)

Question

If you have a question about this example, please use the VTK Discourse Forum

### Code¶

DisplayQuadricSurfaces.cxx

#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkContourFilter.h>
#include <vtkImageData.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkOutlineFilter.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkQuadric.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>
#include <vtkSampleFunction.h>

namespace {
void Other();
void Sphere();
void Cone();
void Ellipsoid();
void Cylinder();
void HyperboloidOneSheet();
void HyperboloidTwoSheets();
void HyperbolicParaboloid();
void EllipticParaboloid();

void PlotFunction(vtkQuadric* quadric, double value);
} // namespace

int main(int, char*[])
{
// Other();
// Sphere();
// Cone();
// Ellipsoid();
// Cylinder();
// HyperboloidOneSheet();
// HyperboloidTwoSheets();
// HyperbolicParaboloid();
EllipticParaboloid();

return EXIT_SUCCESS;
}

namespace {
void Sphere()
{
// create the quadric function definition
vtkNew<vtkQuadric> quadric;
quadric->SetCoefficients(1, 1, 1, 0, 0, 0, 0, 0, 0, 0);

// F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x +
// a7*y + a8*z + a9 F(x,y,z) = 1*x^2 + 1*y^2 + 1*z^2

PlotFunction(quadric, 1.0);
}

void EllipticParaboloid()
{
// create the quadric function definition
vtkNew<vtkQuadric> quadric;
quadric->SetCoefficients(1, 1, 0, 0, 0, 0, 0, 0, -1, 0);

// F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x +
// a7*y + a8*z + a9 F(x,y,z) = 1*x^2 + 1*y^2

PlotFunction(quadric, 10.0);
}

void HyperbolicParaboloid()
{
// create the quadric function definition
vtkNew<vtkQuadric> quadric;
quadric->SetCoefficients(1, -1, 0, 0, 0, 0, 0, 0, 0, 0);

// F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x +
// a7*y + a8*z + a9 F(x,y,z) = 1*x^2 - 1*y^2

PlotFunction(quadric, 10.0);
}

void Cylinder()
{
// create the quadric function definition
vtkNew<vtkQuadric> quadric;
quadric->SetCoefficients(1, 1, 0, 0, 0, 0, 0, 0, 0, 0);

// F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x +
// a7*y + a8*z + a9 F(x,y,z) = 1*x^2 + 1*y^2

PlotFunction(quadric, 1.0);
}

void HyperboloidOneSheet()
{
// create the quadric function definition
vtkNew<vtkQuadric> quadric;
quadric->SetCoefficients(1, 1, -1, 0, 0, 0, 0, 0, 0, 0);

// F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x +
// a7*y + a8*z + a9 F(x,y,z) = 1*x^2 + 1*y^2

PlotFunction(quadric, 1.0);
}

void HyperboloidTwoSheets()
{
// create the quadric function definition
vtkNew<vtkQuadric> quadric;
quadric->SetCoefficients(1, 1, -1, 0, 0, 0, 0, 0, 0, 0);

// F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x +
// a7*y + a8*z + a9 F(x,y,z) = 1*x^2 + 1*y^2

PlotFunction(quadric, -1.0);
}

void Ellipsoid()
{
// create the quadric function definition
vtkNew<vtkQuadric> quadric;
quadric->SetCoefficients(1, 1, 2, 0, 0, 0, 0, 0, 0, 0);

// F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x +
// a7*y + a8*z + a9 F(x,y,z) = 1*x^2 + 1*y^2 + 1*z^2

PlotFunction(quadric, -1.0);
}

void Cone()
{
// create the quadric function definition
vtkNew<vtkQuadric> quadric;
quadric->SetCoefficients(1, 1, -1, 0, 0, 0, 0, 0, 0, 0);

// F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x +
// a7*y + a8*z + a9 F(x,y,z) = 1*x^2 + 1*y^2 - 1*z^2
PlotFunction(quadric, 0.0);
}

void Other()
{
// create the quadric function definition
vtkNew<vtkQuadric> quadric;
quadric->SetCoefficients(.5, 1, .2, 0, .1, 0, 0, .2, 0, 0);

// F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + a5*x*z + a6*x +
// a7*y + a8*z + a9 F(x,y,z) = 0.5*x^2 + 1*y^2 + 0.2*z^2 + 0*x*y + 0.1*y*z +
// 0*x*z + 0*x + 0.2*y + 0*z + 0
PlotFunction(quadric, 1.0);
}

void PlotFunction(vtkQuadric* quadric, double value)
{

vtkNew<vtkNamedColors> colors;

// sample the quadric function
vtkNew<vtkSampleFunction> sample;
sample->SetSampleDimensions(50, 50, 50);
sample->SetImplicitFunction(quadric);
// double xmin = 0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1;
double bounds[6]{-10, 11, -10, 10, -10, 10};
sample->SetModelBounds(bounds);

// Create five surfaces F(x,y,z) = constant between range specified
/*
vtkContourFilter *contours = vtkContourFilter::New();
contours->SetInput(sample->GetOutput());
contours->GenerateValues(5, 0.0, 1.2);
*/

// create the 0 isosurface
vtkNew<vtkContourFilter> contours;
contours->SetInputConnection(sample->GetOutputPort());
contours->GenerateValues(1, value, value);

// map the contours to graphical primitives
vtkNew<vtkPolyDataMapper> contourMapper;
contourMapper->SetInputConnection(contours->GetOutputPort());
contourMapper->SetScalarRange(0.0, 1.2);

// create an actor for the contours
vtkNew<vtkActor> contourActor;
contourActor->SetMapper(contourMapper);

// -- create a box around the function to indicate the sampling volume --

// create outline
vtkNew<vtkOutlineFilter> outline;
outline->SetInputConnection(sample->GetOutputPort());

// map it to graphics primitives
vtkNew<vtkPolyDataMapper> outlineMapper;
outlineMapper->SetInputConnection(outline->GetOutputPort());

// create an actor for it
vtkNew<vtkActor> outlineActor;
outlineActor->SetMapper(outlineMapper);
outlineActor->GetProperty()->SetColor(colors->GetColor3d("Black").GetData());

// setup the window
vtkNew<vtkRenderer> ren1;
vtkNew<vtkRenderWindow> renWin;
renWin->AddRenderer(ren1);
renWin->SetWindowName("DisplayQuadricSurfaces");

vtkNew<vtkRenderWindowInteractor> iren;
iren->SetRenderWindow(renWin);

// add the actors to the scene
ren1->AddActor(contourActor);
ren1->AddActor(outlineActor);
ren1->SetBackground(colors->GetColor3d("AliceBlue").GetData());

// render and interact
renWin->Render();
ren1->GetActiveCamera()->Azimuth(-55);
ren1->GetActiveCamera()->Elevation(15);
iren->Start();
}
} // namespace


### CMakeLists.txt¶

cmake_minimum_required(VERSION 3.12 FATAL_ERROR)

project(DisplayQuadricSurfaces)

find_package(VTK COMPONENTS
CommonColor
CommonCore
CommonDataModel
FiltersCore
FiltersModeling
ImagingHybrid
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2
)

if (NOT VTK_FOUND)
message(FATAL_ERROR "DisplayQuadricSurfaces: Unable to find the VTK build folder.")
endif()

# Prevent a "command line is too long" failure in Windows.
set(CMAKE_NINJA_FORCE_RESPONSE_FILE "ON" CACHE BOOL "Force Ninja to use response files.")
add_executable(DisplayQuadricSurfaces MACOSX_BUNDLE DisplayQuadricSurfaces.cxx )
target_link_libraries(DisplayQuadricSurfaces PRIVATE ${VTK_LIBRARIES} ) # vtk_module_autoinit is needed vtk_module_autoinit( TARGETS DisplayQuadricSurfaces MODULES${VTK_LIBRARIES}
)


### Download and Build DisplayQuadricSurfaces¶

Click here to download DisplayQuadricSurfaces and its CMakeLists.txt file. Once the tarball DisplayQuadricSurfaces.tar has been downloaded and extracted,

cd DisplayQuadricSurfaces/build


If VTK is installed:

cmake ..


If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:

cmake -DVTK_DIR:PATH=/home/me/vtk_build ..


Build the project:

make


and run it:

./DisplayQuadricSurfaces


WINDOWS USERS

Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.