Skip to content

HyperStreamline

vtk-examples/Cxx/VisualizationAlgorithms/HyperStreamline


Description

This is an example of hyperstreamlines. The data is from a point load applied to semi-infinite domain. Compare this image to TensorEllipsoids that used tensor ellipsoids to visualize the same data. Notice that there is less clutter and more information available from the hyperstreamline visualization.

Other languages

See (Python)

Question

If you have a question about this example, please use the VTK Discourse Forum

Code

HyperStreamline.cxx

#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkConeSource.h>
#include <vtkHyperStreamline.h>
#include <vtkImageData.h>
#include <vtkImageDataGeometryFilter.h>
#include <vtkLogLookupTable.h>
#include <vtkNamedColors.h>
#include <vtkNew.h>
#include <vtkOutlineFilter.h>
#include <vtkPointLoad.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>

int main(int, char*[])
{
  // Create the RenderWindow, Renderer and interactive renderer
  //
  vtkNew<vtkNamedColors> colors;

  vtkNew<vtkRenderer> ren1;
  vtkNew<vtkRenderWindow> renWin;
  renWin->SetMultiSamples(0);
  renWin->AddRenderer(ren1);

  vtkNew<vtkRenderWindowInteractor> iren;
  iren->SetRenderWindow(renWin);

  // set VTK_INTEGRATE_BOTH_DIRECTIONS 2

  //
  // generate tensors
  vtkNew<vtkPointLoad> ptLoad;
  ptLoad->SetLoadValue(100.0);
  ptLoad->SetSampleDimensions(20, 20, 20);
  ptLoad->ComputeEffectiveStressOn();
  ptLoad->SetModelBounds(-10, 10, -10, 10, -10, 10);
  ptLoad->Update();

  // Generate hyperstreamlines
  vtkNew<vtkHyperStreamline> s1;
  s1->SetInputData(ptLoad->GetOutput());
  s1->SetStartPosition(9, 9, -9);
  s1->IntegrateMinorEigenvector();
  s1->SetMaximumPropagationDistance(18.0);
  s1->SetIntegrationStepLength(0.1);
  s1->SetStepLength(0.01);
  s1->SetRadius(0.25);
  s1->SetNumberOfSides(18);
  s1->SetIntegrationDirectionToIntegrateBothDirections();
  s1->Update();

  // Map hyperstreamlines
  vtkNew<vtkLogLookupTable> lut;
  lut->SetHueRange(.6667, 0.0);

  vtkNew<vtkPolyDataMapper> s1Mapper;
  s1Mapper->SetInputConnection(s1->GetOutputPort());
  s1Mapper->SetLookupTable(lut);
  s1Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> s1Actor;
  s1Actor->SetMapper(s1Mapper);

  vtkNew<vtkHyperStreamline> s2;
  s2->SetInputData(ptLoad->GetOutput());
  s2->SetStartPosition(-9, -9, -9);
  s2->IntegrateMinorEigenvector();
  s2->SetMaximumPropagationDistance(18.0);
  s2->SetIntegrationStepLength(0.1);
  s2->SetStepLength(0.01);
  s2->SetRadius(0.25);
  s2->SetNumberOfSides(18);
  s2->SetIntegrationDirectionToIntegrateBothDirections();
  s2->Update();

  vtkNew<vtkPolyDataMapper> s2Mapper;
  s2Mapper->SetInputConnection(s2->GetOutputPort());
  s2Mapper->SetLookupTable(lut);
  s2Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> s2Actor;
  s2Actor->SetMapper(s2Mapper);

  vtkNew<vtkHyperStreamline> s3;
  s3->SetInputData(ptLoad->GetOutput());
  s3->SetStartPosition(9, -9, -9);
  s3->IntegrateMinorEigenvector();
  s3->SetMaximumPropagationDistance(18.0);
  s3->SetIntegrationStepLength(0.1);
  s3->SetStepLength(0.01);
  s3->SetRadius(0.25);
  s3->SetNumberOfSides(18);
  s3->SetIntegrationDirectionToIntegrateBothDirections();
  s3->Update();

  vtkNew<vtkPolyDataMapper> s3Mapper;
  s3Mapper->SetInputConnection(s3->GetOutputPort());
  s3Mapper->SetLookupTable(lut);
  s3Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> s3Actor;
  s3Actor->SetMapper(s3Mapper);

  vtkNew<vtkHyperStreamline> s4;
  s4->SetInputData(ptLoad->GetOutput());
  s4->SetStartPosition(-9, 9, -9);
  s4->IntegrateMinorEigenvector();
  s4->SetMaximumPropagationDistance(18.0);
  s4->SetIntegrationStepLength(0.1);
  s4->SetStepLength(0.01);
  s4->SetRadius(0.25);
  s4->SetNumberOfSides(18);
  s4->SetIntegrationDirectionToIntegrateBothDirections();
  s4->Update();

  vtkNew<vtkPolyDataMapper> s4Mapper;
  s4Mapper->SetInputConnection(s4->GetOutputPort());
  s4Mapper->SetLookupTable(lut);
  s4Mapper->SetScalarRange(ptLoad->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> s4Actor;
  s4Actor->SetMapper(s4Mapper);

  // plane for context
  //
  vtkNew<vtkImageDataGeometryFilter> g;
  g->SetInputData(ptLoad->GetOutput());
  g->SetExtent(0, 100, 0, 100, 0, 0);
  g->Update(); // for scalar range

  vtkNew<vtkPolyDataMapper> gm;
  gm->SetInputConnection(g->GetOutputPort());
  gm->SetScalarRange(g->GetOutput()->GetScalarRange());

  vtkNew<vtkActor> ga;
  ga->SetMapper(gm);

  // Create outline around data
  //
  vtkNew<vtkOutlineFilter> outline;
  outline->SetInputData(ptLoad->GetOutput());

  vtkNew<vtkPolyDataMapper> outlineMapper;
  outlineMapper->SetInputConnection(outline->GetOutputPort());

  vtkNew<vtkActor> outlineActor;
  outlineActor->SetMapper(outlineMapper);
  outlineActor->GetProperty()->SetColor(colors->GetColor3d("Black").GetData());

  // Create cone indicating application of load
  //
  vtkNew<vtkConeSource> coneSrc;
  coneSrc->SetRadius(0.5);
  coneSrc->SetHeight(2);

  vtkNew<vtkPolyDataMapper> coneMap;
  coneMap->SetInputConnection(coneSrc->GetOutputPort());

  vtkNew<vtkActor> coneActor;
  coneActor->SetMapper(coneMap);
  coneActor->SetPosition(0, 0, 11);
  coneActor->RotateY(90);
  coneActor->GetProperty()->SetColor(colors->GetColor3d("Tomato").GetData());

  vtkNew<vtkCamera> camera;
  camera->SetFocalPoint(0.113766, -1.13665, -1.01919);
  camera->SetPosition(-29.4886, -63.1488, 26.5807);
  camera->SetViewAngle(24.4617);
  camera->SetViewUp(0.17138, 0.331163, 0.927879);
  camera->SetClippingRange(1, 100);

  ren1->AddActor(s1Actor);
  ren1->AddActor(s2Actor);
  ren1->AddActor(s3Actor);
  ren1->AddActor(s4Actor);
  ren1->AddActor(outlineActor);
  ren1->AddActor(coneActor);
  ren1->AddActor(ga);
  ren1->SetBackground(colors->GetColor3d("SlateGray").GetData());
  ren1->SetActiveCamera(camera);

  renWin->SetSize(640, 480);
  renWin->SetWindowName("HyperStreamline");

  renWin->Render();
  iren->Start();

  return EXIT_SUCCESS;
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.3 FATAL_ERROR)

project(HyperStreamline)

find_package(VTK COMPONENTS 
  vtkCommonColor
  vtkCommonCore
  vtkCommonDataModel
  vtkFiltersGeneral
  vtkFiltersGeometry
  vtkFiltersModeling
  vtkFiltersSources
  vtkImagingHybrid
  vtkInteractionStyle
  vtkRenderingContextOpenGL2
  vtkRenderingCore
  vtkRenderingFreeType
  vtkRenderingGL2PSOpenGL2
  vtkRenderingOpenGL2
  QUIET
)

if (NOT VTK_FOUND)
  message("Skipping HyperStreamline: ${VTK_NOT_FOUND_MESSAGE}")
  return ()
endif()
message (STATUS "VTK_VERSION: ${VTK_VERSION}")
if (VTK_VERSION VERSION_LESS "8.90.0")
  # old system
  include(${VTK_USE_FILE})
  add_executable(HyperStreamline MACOSX_BUNDLE HyperStreamline.cxx )
  target_link_libraries(HyperStreamline PRIVATE ${VTK_LIBRARIES})
else ()
  # include all components
  add_executable(HyperStreamline MACOSX_BUNDLE HyperStreamline.cxx )
  target_link_libraries(HyperStreamline PRIVATE ${VTK_LIBRARIES})
  # vtk_module_autoinit is needed
  vtk_module_autoinit(
    TARGETS HyperStreamline
    MODULES ${VTK_LIBRARIES}
    )
endif ()

Download and Build HyperStreamline

Click here to download HyperStreamline and its CMakeLists.txt file. Once the tarball HyperStreamline.tar has been downloaded and extracted,

cd HyperStreamline/build

If VTK is installed:

cmake ..

If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:

cmake -DVTK_DIR:PATH=/home/me/vtk_build ..

Build the project:

make

and run it:

./HyperStreamline

WINDOWS USERS

Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.