FrogReconstruction
vtk-examples/Python/Visualization/FrogReconstruction
Description¶
Frog organs along with a translucent skin are reconstructed from the original segmented data.
vtkFlyingEdges3D is used by default to take the 3D structured point set and generate the iso-surface. However if desired, you can specify vtkMarchingCubes instead.
The dataset is derived from a frog. This data was prepared at Lawrence Berkeley National Laboratories and is included with their permission. The data was acquired by physically slicing the frog and photographing the slices. The original segmented data is in the form of tissue masks with one file per tissue. There are 136 slices per tissue and 15 different tissues. Each slice is 470 by 500 pixels.
To accommodate the volume readers we have in VTK, we processed the mask files and combined them all into one vtkMetaImageReader .mhd file. Integer numbers 1–15 to represent the 15 tissues. A similar process was done for the frog skin.
The code uses a general way of specifying transformations that can permute image and other geometric data in order to maintain proper orientation regardless of the acquisition order. See the class SliceOrder.
Info
By specifying the tissues and other parameters, as outlined in the code, you can generate approximations to the following figures: Figure 12-9a, Figure 12-9b, Figure 12-9c, and Figure 12-9d in Chapter 12 of the VTK Textbook.
Question
If you have a question about this example, please use the VTK Discourse Forum
Code¶
FrogReconstruction.py
#!/usr/bin/env python
import collections
from pathlib import Path
# noinspection PyUnresolvedReferences
import vtkmodules.vtkInteractionStyle
# noinspection PyUnresolvedReferences
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.vtkCommonColor import vtkNamedColors
from vtkmodules.vtkCommonCore import vtkLookupTable
from vtkmodules.vtkCommonMath import vtkMatrix4x4
from vtkmodules.vtkCommonTransforms import vtkTransform
from vtkmodules.vtkFiltersCore import (
vtkContourFilter,
vtkDecimatePro,
vtkExecutionTimer,
vtkFlyingEdges3D,
vtkMarchingCubes,
vtkPolyDataNormals,
vtkStripper,
vtkWindowedSincPolyDataFilter
)
from vtkmodules.vtkFiltersGeneral import vtkTransformPolyDataFilter
from vtkmodules.vtkIOImage import vtkMetaImageReader
from vtkmodules.vtkImagingCore import (
vtkImageShrink3D,
vtkImageThreshold
)
from vtkmodules.vtkImagingGeneral import vtkImageGaussianSmooth
from vtkmodules.vtkImagingMorphological import vtkImageIslandRemoval2D
from vtkmodules.vtkInteractionWidgets import vtkOrientationMarkerWidget
from vtkmodules.vtkRenderingAnnotation import vtkAxesActor
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkPolyDataMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer
)
def get_program_parameters(argv):
import argparse
description = 'Display all frog parts and translucent skin.'
epilogue = '''
To specify all the tissues at once:
blood brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve skeleton spleen stomach skin
You can leave out brainbin, it is the brain with no gaussian smoothing.
Here are the parameters used to get the views in the VTK Textbook:
Fig12-9a:
blood brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve skeleton spleen stomach skin -a
Fig12-9b:
blood brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve skeleton spleen stomach -a
Fig12-9c:
brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve spleen stomach -c
Fig12-9c:
brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve spleen stomach -d
'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)
group = parser.add_mutually_exclusive_group()
group.add_argument('-a', action='store_const', dest='view', const='a',
help='The view corresponds to Figs 12-9a and 12-9b in the VTK Textbook')
group.add_argument('-c', action='store_const', dest='view', const='c',
help='The view corresponds to Figs 12-9c in the VTK Textbook')
group.add_argument('-d', action='store_const', dest='view', const='d',
help='The view corresponds to Figs 12-9d in the VTK Textbook')
parser.set_defaults(type=None)
parser.add_argument('-m', action='store_false', dest='flying_edges',
help='Use flying edges by default, marching cubes if set.')
parser.add_argument('-t', action='store_true', dest='decimation',
help='Decimate if set.')
parser.add_argument('data_folder', help='The path to the files: frog.mhd and frogtissue.mhd.')
parser.add_argument('tissues', nargs='+', help='List of one or more tissues.')
args = parser.parse_args()
return args.data_folder, args.tissues, args.view, args.flying_edges, args.decimation
def main(data_folder, tissues, view, flying_edges, decimate):
colors = vtkNamedColors()
path = Path(data_folder)
if path.is_dir():
s = ''
frog_fn = path.joinpath('frog').with_suffix('.mhd')
if not frog_fn.is_file():
s += 'The file: {:s} does not exist.\n'.format(str(frog_fn))
print(s)
frog_tissue_fn = path.joinpath('frogtissue').with_suffix('.mhd')
if not frog_tissue_fn.is_file():
s += 'The file: {:s} does not exist.'.format(str(frog_tissue_fn))
if s:
print(s)
return
else:
print('Expected a path to frog.mhs and frogtissue.mhd')
return
# Tissue parameters
available_tissues = tissue_parameters()
selected_tissues = {key: available_tissues[key] for key in tissues}
if not selected_tissues:
print('No tissues!')
return
missing_parameters = False
for k, v in selected_tissues.items():
res = check_for_required_parameters(k, v)
if res:
print(res)
missing_parameters = True
if missing_parameters:
print('Some required parameters are missing!')
return
# Setup render window, renderer, and interactor.
renderer = vtkRenderer()
render_window = vtkRenderWindow()
render_window.AddRenderer(renderer)
render_window_interactor = vtkRenderWindowInteractor()
render_window_interactor.SetRenderWindow(render_window)
lut = create_frog_lut(colors)
# Time some filters
ict = collections.defaultdict(dict)
for name, tissue in selected_tissues.items():
print('Tissue: {:>9s}, label: {:2d}'.format(name, tissue['TISSUE']))
t, actor = create_frog_actor(frog_fn, frog_tissue_fn, tissue, flying_edges, decimate, lut)
ict[name] = t
renderer.AddActor(actor)
# Initial view (looking down on the dorsal surface).
renderer.GetActiveCamera().Roll(-90)
renderer.ResetCamera()
# Final view
if view:
if view == 'a':
# Figs 12-9a and 12-9b in the VTK Textbook
camera = renderer.GetActiveCamera()
camera.SetPosition(-850.073854, 834.142692, 266.017598)
camera.SetFocalPoint(-72.387897, 109.637349, -306.343185)
camera.SetViewUp(0.284585, -0.387303, 0.876931)
camera.SetDistance(1207.186939)
camera.SetClippingRange(247.737449, 1758.922849)
elif view == 'c':
# Figs 12-9c in the VTK Textbook
camera = renderer.GetActiveCamera()
camera.SetPosition(-438.993734, 404.715262, 105.797836)
camera.SetFocalPoint(-254.193794, 245.672169, -95.535892)
camera.SetViewUp(0.256893, -0.629643, 0.733182)
camera.SetDistance(316.197712)
camera.SetClippingRange(0.789810, 789.809963)
elif view == 'd':
# Fig 12-9d in the VTK Textbook
camera = renderer.GetActiveCamera()
camera.SetPosition(-262.252604, 229.863144, 562.084505)
camera.SetFocalPoint(-288.693092, 228.870041, -91.185421)
camera.SetViewUp(0.729526, -0.683360, -0.028488)
camera.SetDistance(653.805539)
camera.SetClippingRange(452.459105, 905.003135)
print('Timings:')
print('\n'.join(format_timings(ict)))
renderer.SetBackground(colors.GetColor3d('LightSteelBlue'))
render_window.SetSize(640, 640)
render_window.SetWindowName('FrogReconstruction')
render_window.Render()
axes = vtkAxesActor()
widget = vtkOrientationMarkerWidget()
rgba = [0.0, 0.0, 0.0, 0.0]
colors.GetColor("Carrot", rgba)
widget.SetOutlineColor(rgba[0], rgba[1], rgba[2])
widget.SetOrientationMarker(axes)
widget.SetInteractor(render_window_interactor)
widget.SetViewport(0.0, 0.0, 0.2, 0.2)
widget.SetEnabled(1)
widget.InteractiveOn()
render_window.Render()
render_window_interactor.Start()
def create_frog_actor(frog_fn, frog_tissue_fn, tissue, flying_edges, decimate, lut):
# Get the tissue parameters
pixel_size = tissue['PIXEL_SIZE']
columns = tissue['COLUMNS']
rows = tissue['ROWS']
voi = tissue['VOI']
spacing = float(tissue['SPACING'])
start_slice = float(tissue['START_SLICE'])
data_spacing = [pixel_size, pixel_size, spacing]
data_origin = [-(columns / 2.0) * pixel_size, -(rows / 2.0) * pixel_size, start_slice * spacing]
#
# adjust y bounds for PNM coordinate system
#
tmp = voi[2]
voi[2] = rows - voi[3] - 1
voi[3] = rows - tmp - 1
if tissue['NAME'] == 'skin':
fn = frog_fn
else:
fn = frog_tissue_fn
reader = vtkMetaImageReader()
reader.SetFileName(str(fn))
reader.SetDataSpacing(data_spacing)
reader.SetDataOrigin(data_origin)
reader.SetDataExtent(voi)
reader.Update()
last_connection = reader
if not tissue['NAME'] == 'skin':
if tissue['ISLAND_REPLACE'] >= 0:
island_remover = vtkImageIslandRemoval2D()
island_remover.SetAreaThreshold(tissue['ISLAND_AREA'])
island_remover.SetIslandValue(tissue['ISLAND_REPLACE'])
island_remover.SetReplaceValue(tissue['TISSUE'])
island_remover.SetInput(last_connection.GetOutput())
island_remover.Update()
last_connection = island_remover
select_tissue = vtkImageThreshold()
select_tissue.ThresholdBetween(tissue['TISSUE'], tissue['TISSUE'])
select_tissue.SetInValue(255)
select_tissue.SetOutValue(0)
select_tissue.SetInputConnection(last_connection.GetOutputPort())
last_connection = select_tissue
shrinker = vtkImageShrink3D()
shrinker.SetInputConnection(last_connection.GetOutputPort())
shrinker.SetShrinkFactors(tissue['SAMPLE_RATE'])
shrinker.AveragingOn()
last_connection = shrinker
if not all(v == 0 for v in tissue['GAUSSIAN_STANDARD_DEVIATION']):
gaussian = vtkImageGaussianSmooth()
gaussian.SetStandardDeviation(*tissue['GAUSSIAN_STANDARD_DEVIATION'])
gaussian.SetRadiusFactors(*tissue['GAUSSIAN_RADIUS_FACTORS'])
gaussian.SetInputConnection(shrinker.GetOutputPort())
last_connection = gaussian
# Time the isocontouring.
ict = collections.defaultdict()
iso_value = tissue['VALUE']
if flying_edges:
iso_surface = vtkFlyingEdges3D()
iso_surface.SetInputConnection(last_connection.GetOutputPort())
iso_surface.ComputeScalarsOff()
iso_surface.ComputeGradientsOff()
iso_surface.ComputeNormalsOff()
iso_surface.SetValue(0, iso_value)
timer = vtkExecutionTimer()
timer.SetFilter(iso_surface)
iso_surface.Update()
ict['Flying Edges'] = timer.GetElapsedWallClockTime()
else:
iso_surface = vtkMarchingCubes()
iso_surface.SetInputConnection(last_connection.GetOutputPort())
iso_surface.ComputeScalarsOff()
iso_surface.ComputeGradientsOff()
iso_surface.ComputeNormalsOff()
iso_surface.SetValue(0, iso_value)
timer = vtkExecutionTimer()
timer.SetFilter(iso_surface)
iso_surface.Update()
ict['Marching Cubes'] = timer.GetElapsedWallClockTime()
so = SliceOrder()
# transform = so.get(tissue['SLICE_ORDER'])
# Match Frog.py
transform = so.get('hfap')
transform.Scale(1, -1, 1)
tf = vtkTransformPolyDataFilter()
tf.SetTransform(transform)
tf.SetInputConnection(iso_surface.GetOutputPort())
last_connection = tf
if decimate:
decimator = vtkDecimatePro()
decimator.SetInputConnection(last_connection.GetOutputPort())
decimator.SetFeatureAngle(tissue['DECIMATE_ANGLE'])
decimator.MaximumIterations = tissue['DECIMATE_ITERATIONS']
decimator.PreserveTopologyOn()
decimator.SetErrorIsAbsolute(1)
decimator.SetAbsoluteError(tissue['DECIMATE_ERROR'])
decimator.SetTargetReduction(tissue['DECIMATE_REDUCTION'])
last_connection = decimator
smoother = vtkWindowedSincPolyDataFilter()
smoother.SetInputConnection(last_connection.GetOutputPort())
smoother.SetNumberOfIterations(tissue['SMOOTH_ITERATIONS'])
smoother.BoundarySmoothingOff()
smoother.FeatureEdgeSmoothingOff()
smoother.SetFeatureAngle(tissue['SMOOTH_ANGLE'])
smoother.SetPassBand(tissue['SMOOTH_FACTOR'])
smoother.NonManifoldSmoothingOn()
smoother.NormalizeCoordinatesOff()
smoother.Update()
normals = vtkPolyDataNormals()
normals.SetInputConnection(smoother.GetOutputPort())
normals.SetFeatureAngle(tissue['FEATURE_ANGLE'])
stripper = vtkStripper()
stripper.SetInputConnection(normals.GetOutputPort())
mapper = vtkPolyDataMapper()
mapper.SetInputConnection(stripper.GetOutputPort())
# Create iso-surface
contour = vtkContourFilter()
contour.SetInputConnection(reader.GetOutputPort())
contour.SetValue(0, iso_value)
actor = vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetOpacity(tissue['OPACITY'])
actor.GetProperty().SetDiffuseColor(lut.GetTableValue(tissue['TISSUE'])[:3])
actor.GetProperty().SetSpecular(0.5)
actor.GetProperty().SetSpecularPower(10)
return ict, actor
class SliceOrder:
"""
These transformations permute image and other geometric data to maintain proper
orientation regardless of the acquisition order. After applying these transforms with
vtkTransformFilter, a view up of 0,-1,0 will result in the body part
facing the viewer.
NOTE: some transformations have a -1 scale factor for one of the components.
To ensure proper polygon orientation and normal direction, you must
apply the vtkPolyDataNormals filter.
Naming (the nomenclature is medical):
si - superior to inferior (top to bottom)
is - inferior to superior (bottom to top)
ap - anterior to posterior (front to back)
pa - posterior to anterior (back to front)
lr - left to right
rl - right to left
"""
def __init__(self):
self.si_mat = vtkMatrix4x4()
self.si_mat.Zero()
self.si_mat.SetElement(0, 0, 1)
self.si_mat.SetElement(1, 2, 1)
self.si_mat.SetElement(2, 1, -1)
self.si_mat.SetElement(3, 3, 1)
self.is_mat = vtkMatrix4x4()
self.is_mat.Zero()
self.is_mat.SetElement(0, 0, 1)
self.is_mat.SetElement(1, 2, -1)
self.is_mat.SetElement(2, 1, -1)
self.is_mat.SetElement(3, 3, 1)
self.lr_mat = vtkMatrix4x4()
self.lr_mat.Zero()
self.lr_mat.SetElement(0, 2, -1)
self.lr_mat.SetElement(1, 1, -1)
self.lr_mat.SetElement(2, 0, 1)
self.lr_mat.SetElement(3, 3, 1)
self.rl_mat = vtkMatrix4x4()
self.rl_mat.Zero()
self.rl_mat.SetElement(0, 2, 1)
self.rl_mat.SetElement(1, 1, -1)
self.rl_mat.SetElement(2, 0, 1)
self.rl_mat.SetElement(3, 3, 1)
"""
The previous transforms assume radiological views of the slices (viewed from the feet). other
modalities such as physical sectioning may view from the head. These transforms modify the original
with a 180° rotation about y
"""
self.hf_mat = vtkMatrix4x4()
self.hf_mat.Zero()
self.hf_mat.SetElement(0, 0, -1)
self.hf_mat.SetElement(1, 1, 1)
self.hf_mat.SetElement(2, 2, -1)
self.hf_mat.SetElement(3, 3, 1)
def s_i(self):
t = vtkTransform()
t.SetMatrix(self.si_mat)
return t
def i_s(self):
t = vtkTransform()
t.SetMatrix(self.is_mat)
return t
@staticmethod
def a_p():
t = vtkTransform()
return t.Scale(1, -1, 1)
@staticmethod
def p_a():
t = vtkTransform()
return t.Scale(1, -1, -1)
def l_r(self):
t = vtkTransform()
t.SetMatrix(self.lr_mat)
t.Update()
return t
def r_l(self):
t = vtkTransform()
t.SetMatrix(self.lr_mat)
return t
def h_f(self):
t = vtkTransform()
t.SetMatrix(self.hf_mat)
return t
def hf_si(self):
t = vtkTransform()
t.Concatenate(self.hf_mat)
t.Concatenate(self.si_mat)
return t
def hf_is(self):
t = vtkTransform()
t.Concatenate(self.hf_mat)
t.Concatenate(self.is_mat)
return t
def hf_ap(self):
t = vtkTransform()
t.Concatenate(self.hf_mat)
t.Scale(1, -1, 1)
return t
def hf_pa(self):
t = vtkTransform()
t.Concatenate(self.hf_mat)
t.Scale(1, -1, -1)
return t
def hf_lr(self):
t = vtkTransform()
t.Concatenate(self.hf_mat)
t.Concatenate(self.lr_mat)
return t
def hf_rl(self):
t = vtkTransform()
t.Concatenate(self.hf_mat)
t.Concatenate(self.rl_mat)
return t
def get(self, order):
"""
Returns the vtkTransform corresponding to the slice order.
:param order: The slice order
:return: The vtkTransform to use
"""
if order == 'si':
return self.s_i()
elif order == 'is':
return self.i_s()
elif order == 'ap':
return self.a_p()
elif order == 'pa':
return self.p_a()
elif order == 'lr':
return self.l_r()
elif order == 'rl':
return self.r_l()
elif order == 'hf':
return self.h_f()
elif order == 'hfsi':
return self.hf_si()
elif order == 'hfis':
return self.hf_is()
elif order == 'hfap':
return self.hf_ap()
elif order == 'hfpa':
return self.hf_pa()
elif order == 'hflr':
return self.hf_lr()
elif order == 'hfrl':
return self.hf_rl()
else:
s = 'No such transform "{:s}" exists.'.format(order)
raise Exception(s)
def default_parameters():
p = dict()
p['NAME'] = ''
p['TISSUE'] = '1'
p['START_SLICE'] = '0'
p['END_SLICE'] = '255'
p['STUDY'] = 'frogtissue'
p['VALUE'] = 127.5
p['ROWS'] = 470
p['COLUMNS'] = 500
p['HEADER_SIZE'] = 0
p['PIXEL_SIZE'] = 1
p['SPACING'] = 1.5
p['START_SLICE'] = 1
p['END_SLICE'] = 138
p['REDUCTION'] = 1
p['FEATURE_ANGLE'] = 60
p['DECIMATE_ANGLE'] = 60
p['SMOOTH_ANGLE'] = 60
p['SMOOTH_ITERATIONS'] = 10
p['SMOOTH_FACTOR'] = 0.1
p['DECIMATE_ITERATIONS'] = 1
p['DECIMATE_REDUCTION'] = 1
p['DECIMATE_ERROR'] = 0.0002
p['DECIMATE_ERROR_INCREMENT'] = 0.0002
p['ISLAND_AREA'] = 4
p['ISLAND_REPLACE'] = -1
p['GAUSSIAN_STANDARD_DEVIATION'] = [2, 2, 2]
p['GAUSSIAN_RADIUS_FACTORS'] = [2, 2, 2]
p['VOI'] = [0, p['COLUMNS'] - 1, 0, p['ROWS'] - 1, 0, p['END_SLICE']]
p['SAMPLE_RATE'] = [1, 1, 1]
p['OPACITY'] = 1.0
return p
def blood():
p = frog()
p['NAME'] = 'blood'
p['TISSUE'] = 1
p['START_SLICE'] = 14
p['END_SLICE'] = 131
p['VALUE'] = 4
p['VOI'] = [33, 406, 62, 425, p['START_SLICE'], p['END_SLICE']]
return p
def brain():
p = frog()
p['NAME'] = 'brain'
p['TISSUE'] = 2
p['START_SLICE'] = 1
p['END_SLICE'] = 33
p['VOI'] = [349, 436, 211, 252, p['START_SLICE'], p['END_SLICE']]
return p
def brainbin():
p = frog()
p['NAME'] = 'brainbin'
p['TISSUE'] = 2
p['START_SLICE'] = 1
p['END_SLICE'] = 33
p['VOI'] = [349, 436, 211, 252, p['END_SLICE'], p['START_SLICE']]
p['GAUSSIAN_STANDARD_DEVIATION'] = [0, 0, 0]
p['DECIMATE_ITERATIONS'] = 0
return p
def duodenum():
p = frog()
p['NAME'] = 'duodenum'
p['TISSUE'] = 3
p['START_SLICE'] = 35
p['END_SLICE'] = 105
p['VOI'] = [189, 248, 191, 284, p['START_SLICE'], p['END_SLICE']]
return p
def eye_retna():
p = frog()
p['NAME'] = 'eye_retna'
p['TISSUE'] = 4
p['START_SLICE'] = 1
p['END_SLICE'] = 41
p['VOI'] = [342, 438, 180, 285, p['START_SLICE'], p['END_SLICE']]
return p
def eye_white():
p = frog()
p['NAME'] = 'eye_white'
p['TISSUE'] = 5
p['START_SLICE'] = 1
p['END_SLICE'] = 37
p['VOI'] = [389, 433, 183, 282, p['START_SLICE'], p['END_SLICE']]
return p
def frog():
p = default_parameters()
p['ROWS'] = 470
p['COLUMNS'] = 500
p['STUDY'] = 'frogtissue'
p['SLICE_ORDER'] = 'si'
p['PIXEL_SIZE'] = 1
p['SPACING'] = 1.5
p['VALUE'] = 127.5
p['SAMPLE_RATE'] = [1, 1, 1]
p['GAUSSIAN_STANDARD_DEVIATION'] = [2, 2, 2]
p['DECIMATE_REDUCTION'] = 0.95
p['DECIMATE_ITERATIONS'] = 5
p['DECIMATE_ERROR'] = 0.0002
p['DECIMATE_ERROR_INCREMENT'] = 0.0002
p['SMOOTH_FACTOR'] = 0.1
return p
def heart():
p = frog()
p['NAME'] = 'heart'
p['TISSUE'] = 6
p['START_SLICE'] = 49
p['END_SLICE'] = 93
p['VOI'] = [217, 299, 186, 266, p['START_SLICE'], p['END_SLICE']]
return p
def ileum():
p = frog()
p['NAME'] = 'ileum'
p['TISSUE'] = 7
p['START_SLICE'] = 25
p['END_SLICE'] = 93
p['VOI'] = [172, 243, 201, 290, p['START_SLICE'], p['END_SLICE']]
return p
def kidney():
p = frog()
p['NAME'] = 'kidney'
p['TISSUE'] = 8
p['START_SLICE'] = 24
p['END_SLICE'] = 78
p['VOI'] = [116, 238, 193, 263, p['START_SLICE'], p['END_SLICE']]
return p
def l_intestine():
p = frog()
p['NAME'] = 'l_intestine'
p['TISSUE'] = 9
p['START_SLICE'] = 56
p['END_SLICE'] = 106
p['VOI'] = [115, 224, 209, 284, p['START_SLICE'], p['END_SLICE']]
return p
def liver():
p = frog()
p['NAME'] = 'liver'
p['TISSUE'] = 10
p['START_SLICE'] = 25
p['END_SLICE'] = 126
p['VOI'] = [167, 297, 154, 304, p['START_SLICE'], p['END_SLICE']]
return p
def lung():
p = frog()
p['NAME'] = 'lung'
p['TISSUE'] = 11
p['START_SLICE'] = 24
p['END_SLICE'] = 59
p['VOI'] = [222, 324, 157, 291, p['START_SLICE'], p['END_SLICE']]
return p
def nerve():
p = frog()
p['NAME'] = 'nerve'
p['TISSUE'] = 12
p['START_SLICE'] = 7
p['END_SLICE'] = 113
p['VOI'] = [79, 403, 63, 394, p['START_SLICE'], p['END_SLICE']]
return p
def skin():
p = default_parameters()
p['NAME'] = 'skin'
p['TISSUE'] = 0
p['ROWS'] = 470
p['COLUMNS'] = 500
p['STUDY'] = 'frog'
p['SLICE_ORDER'] = 'si'
p['PIXEL_SIZE'] = 1
p['SPACING'] = 1.5
p['START_SLICE'] = 1
p['END_SLICE'] = 138
p['VOI'] = [0, 499, 0, 469, p['START_SLICE'], p['END_SLICE']]
p['VALUE'] = 10.5
p['SAMPLE_RATE'] = [2, 2, 1]
p['DECIMATE_REDUCTION'] = 0.95
p['DECIMATE_ITERATIONS'] = 10
p['DECIMATE_ERROR'] = 0.0002
p['DECIMATE_ERROR_INCREMENT'] = 0.0002
p['FEATURE_ANGLE'] = 60
p['OPACITY'] = 0.4
return p
def skeleton():
p = frog()
p['STUDY'] = 'frogtissue'
p['NAME'] = 'skeleton'
p['TISSUE'] = 13
p['VALUE'] = 64.5
p['START_SLICE'] = 1
p['END_SLICE'] = 136
p['VOI'] = [23, 479, 8, 469, p['START_SLICE'], p['END_SLICE']]
p['GAUSSIAN_STANDARD_DEVIATION'] = [1.5, 1.5, 1]
return p
def spleen():
p = frog()
p['NAME'] = 'spleen'
p['TISSUE'] = 14
p['START_SLICE'] = 45
p['END_SLICE'] = 68
p['VOI'] = [166, 219, 195, 231, p['START_SLICE'], p['END_SLICE']]
return p
def stomach():
p = frog()
p['NAME'] = 'stomach'
p['TISSUE'] = 15
p['START_SLICE'] = 26
p['END_SLICE'] = 119
p['VOI'] = [143, 365, 158, 297, p['START_SLICE'], p['END_SLICE']]
return p
def tissue_parameters():
t = dict()
t['blood'] = blood()
t['brain'] = brain()
t['brainbin'] = brainbin()
t['duodenum'] = duodenum()
t['eye_retna'] = eye_retna()
t['eye_white'] = eye_white()
t['frog'] = frog()
t['heart'] = heart()
t['ileum'] = ileum()
t['kidney'] = kidney()
t['l_intestine'] = l_intestine()
t['liver'] = liver()
t['lung'] = lung()
t['nerve'] = nerve()
t['skin'] = skin()
t['skeleton'] = skeleton()
t['spleen'] = spleen()
t['stomach'] = stomach()
return t
def create_frog_lut(colors):
lut = vtkLookupTable()
lut.SetNumberOfColors(16)
lut.SetTableRange(0, 15)
lut.Build()
lut.SetTableValue(0, colors.GetColor4d('LimeGreen')) # skin
lut.SetTableValue(1, colors.GetColor4d('salmon')) # blood
lut.SetTableValue(2, colors.GetColor4d('beige')) # brain
lut.SetTableValue(3, colors.GetColor4d('orange')) # duodenum
lut.SetTableValue(4, colors.GetColor4d('misty_rose')) # eye_retina
lut.SetTableValue(5, colors.GetColor4d('white')) # eye_white
lut.SetTableValue(6, colors.GetColor4d('tomato')) # heart
lut.SetTableValue(7, colors.GetColor4d('raspberry')) # ileum
lut.SetTableValue(8, colors.GetColor4d('banana')) # kidney
lut.SetTableValue(9, colors.GetColor4d('peru')) # l_intestine
lut.SetTableValue(10, colors.GetColor4d('pink')) # liver
lut.SetTableValue(11, colors.GetColor4d('powder_blue')) # lung
lut.SetTableValue(12, colors.GetColor4d('carrot')) # nerve
lut.SetTableValue(13, colors.GetColor4d('wheat')) # skeleton
lut.SetTableValue(14, colors.GetColor4d('violet')) # spleen
lut.SetTableValue(15, colors.GetColor4d('plum')) # stomach
return lut
def check_for_required_parameters(tissue, parameters):
required = {'NAME', 'END_SLICE', 'TISSUE', 'STUDY', 'ROWS',
'COLUMNS', 'VALUE', 'SPACING',
'GAUSSIAN_STANDARD_DEVIATION', 'VOI',
'DECIMATE_ITERATIONS'}
k = set(parameters.keys())
s = None
if len(k) == 0:
s = 'Missing parameters for {:11s}: {:s}'.format(tissue, ', '.join(map(str, required)))
else:
d = required.difference(k)
if d:
s = 'Missing parameters for {:11s}: {:s}'.format(tissue, ', '.join(map(str, d)))
return s
def format_timings(ict):
res = list()
total = 0
sk = sorted(ict.keys())
for k in sk:
sigma = 0
res.append('{:11s}'.format(k))
skk = sorted(ict[k].keys())
for kk in skk:
sigma += ict[k][kk]
res.append('{:11s}{:13s} {:5.2f}s'.format(' ', kk, ict[k][kk]))
total += sigma
res.append('Subtotal: {:5.2f}s'.format(sigma))
res.append(' Total: {:5.2f}s'.format(total))
return res
if __name__ == '__main__':
import sys
data_folder, tissue, view, flying_edges, decimate = get_program_parameters(sys.argv)
main(data_folder, tissue, view, flying_edges, decimate)