All files / Sources/Common/DataModel/Line index.js

71.03% Statements 103/145
71.15% Branches 37/52
66.66% Functions 6/9
71.63% Lines 101/141

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270            1x           538x 538x     538x 538x 538x       538x 538x     538x 538x 531x   538x 252x   538x   538x     259x 279x 7x   272x 272x 272x 272x     538x 518x 518x 518x   538x 538x       9x 9x 9x   9x 9x     9x 9x 9x     9x               9x 9x 9x   9x     5x 5x 5x 5x 5x 5x   5x 20x 20x 7x 7x 7x     5x   4x 4x     4x 2x     2x             1x                     14x     4x     14x 14x 4x           4x 4x 4x   4x 4x 4x 4x   4x 4x 4x 4x 4x 4x   4x   1x 3x 3x   1x 1x 1x           3x                   3x 1x 1x           1x   2x                   2x                     2x     14x                           14x                             1x             14x   14x   14x   14x         1x          
import macro from 'vtk.js/Sources/macros';
import Constants from 'vtk.js/Sources/Common/DataModel/Line/Constants';
import vtkCell from 'vtk.js/Sources/Common/DataModel/Cell';
import * as vtkMath from 'vtk.js/Sources/Common/Core/Math';
import { quat } from 'gl-matrix';
 
const { IntersectionState } = Constants;
 
// ----------------------------------------------------------------------------
// Global methods
// ----------------------------------------------------------------------------
function distanceToLine(x, p1, p2, closestPoint = null) {
  const outObj = { t: Number.MIN_VALUE, distance: 0 };
  const p21 = [];
  let closest;
  // Determine appropriate vector
  p21[0] = p2[0] - p1[0];
  p21[1] = p2[1] - p1[1];
  p21[2] = p2[2] - p1[2];
 
  // Get parametric location
  const num =
    p21[0] * (x[0] - p1[0]) + p21[1] * (x[1] - p1[1]) + p21[2] * (x[2] - p1[2]);
  const denom = vtkMath.dot(p21, p21);
 
  // trying to avoid an expensive fabs
  let tolerance = 1e-5 * num;
  if (denom !== 0.0) {
    outObj.t = num / denom;
  }
  if (tolerance < 0.0) {
    tolerance = -tolerance;
  }
  Iif (-tolerance < denom && denom < tolerance) {
    closest = p1;
  } else if (denom <= 0.0 || outObj.t < 0.0) {
    // If parametric coordinate is within 0<=p<=1, then the point is closest to
    // the line.  Otherwise, it's closest to a point at the end of the line.
    closest = p1;
  } else if (outObj.t > 1.0) {
    closest = p2;
  } else {
    closest = p21;
    p21[0] = p1[0] + outObj.t * p21[0];
    p21[1] = p1[1] + outObj.t * p21[1];
    p21[2] = p1[2] + outObj.t * p21[2];
  }
 
  if (closestPoint) {
    closestPoint[0] = closest[0];
    closestPoint[1] = closest[1];
    closestPoint[2] = closest[2];
  }
  outObj.distance = vtkMath.distance2BetweenPoints(closest, x);
  return outObj;
}
 
function intersection(a1, a2, b1, b2, u, v) {
  const a21 = [];
  const b21 = [];
  const b1a1 = [];
 
  u[0] = 0.0;
  v[0] = 0.0;
 
  // Determine line vectors.
  vtkMath.subtract(a2, a1, a21);
  vtkMath.subtract(b2, b1, b21);
  vtkMath.subtract(b1, a1, b1a1);
 
  // Compute the system (least squares) matrix.
  const A = [
    vtkMath.dot(a21, a21),
    -vtkMath.dot(a21, b21),
    -vtkMath.dot(a21, b21),
    vtkMath.dot(b21, b21),
  ];
 
  // Compute the least squares system constant term.
  const c = [];
  c[0] = vtkMath.dot(a21, b1a1);
  c[1] = -vtkMath.dot(b21, b1a1);
  // Solve the system of equations
  if (vtkMath.solveLinearSystem(A, c, 2) === 0) {
    // The lines are colinear. Therefore, one of the four endpoints is the
    // point of closest approach
    let minDist = Number.MAX_VALUE;
    const p = [a1, a2, b1, b2];
    const l1 = [b1, b1, a1, a1];
    const l2 = [b2, b2, a2, a2];
    const uv1 = [v[0], v[0], u[0], u[0]];
    const uv2 = [u[0], u[0], v[0], v[0]];
    let obj;
    for (let i = 0; i < 4; i++) {
      obj = distanceToLine(p[i], l1[i], l2[i]);
      if (obj.distance < minDist) {
        minDist = obj.distance;
        uv1[i] = obj.t;
        uv2[i] = i % 2;
      }
    }
    return IntersectionState.ON_LINE;
  }
  u[0] = c[0];
  v[0] = c[1];
 
  // Check parametric coordinates for intersection.
  if (u[0] >= 0.0 && u[0] <= 1.0 && v[0] >= 0.0 && v[0] <= 1.0) {
    return IntersectionState.YES_INTERSECTION;
  }
 
  return IntersectionState.NO_INTERSECTION;
}
 
// ----------------------------------------------------------------------------
// Static API
// ----------------------------------------------------------------------------
 
export const STATIC = {
  distanceToLine,
  intersection,
};
 
// ----------------------------------------------------------------------------
// vtkLine methods
// ----------------------------------------------------------------------------
 
function vtkLine(publicAPI, model) {
  // Set our className
  model.classHierarchy.push('vtkLine');
 
  function isBetweenPoints(t) {
    return t >= 0.0 && t <= 1.0;
  }
 
  publicAPI.getCellDimension = () => 1;
  publicAPI.intersectWithLine = (p1, p2, tol, x, pcoords) => {
    const outObj = {
      intersect: 0,
      t: Number.MAX_VALUE,
      subId: 0,
      betweenPoints: null,
    };
    pcoords[1] = 0.0;
    pcoords[2] = 0.0;
    const projXYZ = [];
 
    const a1 = [];
    const a2 = [];
    model.points.getPoint(0, a1);
    model.points.getPoint(1, a2);
 
    const u = [];
    const v = [];
    const intersect = intersection(p1, p2, a1, a2, u, v);
    outObj.t = u[0];
    outObj.betweenPoints = isBetweenPoints(outObj.t);
    pcoords[0] = v[0];
 
    if (intersect === IntersectionState.YES_INTERSECTION) {
      // make sure we are within tolerance
      for (let i = 0; i < 3; i++) {
        x[i] = a1[i] + pcoords[0] * (a2[i] - a1[i]);
        projXYZ[i] = p1[i] + outObj.t * (p2[i] - p1[i]);
      }
      if (vtkMath.distance2BetweenPoints(x, projXYZ) <= tol * tol) {
        outObj.intersect = 1;
        return outObj;
      }
    } else {
      let outDistance;
      // check to see if it lies within tolerance
      // one of the parametric coords must be outside 0-1
      Iif (outObj.t < 0.0) {
        outDistance = distanceToLine(p1, a1, a2, x);
        if (outDistance.distance <= tol * tol) {
          outObj.t = 0.0;
          outObj.intersect = 1;
          outObj.betweenPoints = true; // Intersection is near p1
          return outObj;
        }
        return outObj;
      }
      if (outObj.t > 1.0) {
        outDistance = distanceToLine(p2, a1, a2, x);
        Iif (outDistance.distance <= tol * tol) {
          outObj.t = 1.0;
          outObj.intersect = 1;
          outObj.betweenPoints = true; // Intersection is near p2
          return outObj;
        }
        return outObj;
      }
      Iif (pcoords[0] < 0.0) {
        pcoords[0] = 0.0;
        outDistance = distanceToLine(a1, p1, p2, x);
        outObj.t = outDistance.t;
        if (outDistance.distance <= tol * tol) {
          outObj.intersect = 1;
          return outObj;
        }
        return outObj;
      }
      Iif (pcoords[0] > 1.0) {
        pcoords[0] = 1.0;
        outDistance = distanceToLine(a2, p1, p2, x);
        outObj.t = outDistance.t;
        if (outDistance.distance <= tol * tol) {
          outObj.intersect = 1;
          return outObj;
        }
        return outObj;
      }
    }
    return outObj;
  };
 
  publicAPI.evaluateLocation = (pcoords, x, weights) => {
    const a1 = [];
    const a2 = [];
    model.points.getPoint(0, a1);
    model.points.getPoint(1, a2);
 
    for (let i = 0; i < 3; i++) {
      x[i] = a1[i] + pcoords[0] * (a2[i] - a1[i]);
    }
 
    weights[0] = 1.0 - pcoords[0];
    weights[1] = pcoords[0];
  };
 
  publicAPI.evaluateOrientation = (pcoords, q, weights) => {
    if (model.orientations) {
      quat.slerp(q, model.orientations[0], model.orientations[1], pcoords[0]);
      weights[0] = 1.0 - pcoords[0];
      weights[1] = pcoords[0];
      return true;
    }
    return false;
  };
}
 
// ----------------------------------------------------------------------------
// Object factory
// ----------------------------------------------------------------------------
 
const DEFAULT_VALUES = {
  orientations: null, // an array of two quat or null
};
 
// ----------------------------------------------------------------------------
 
export function extend(publicAPI, model, initialValues = {}) {
  Object.assign(model, DEFAULT_VALUES, initialValues);
 
  vtkCell.extend(publicAPI, model, initialValues);
 
  macro.setGet(publicAPI, model, ['orientations']);
 
  vtkLine(publicAPI, model);
}
 
// ----------------------------------------------------------------------------
 
export const newInstance = macro.newInstance(extend, 'vtkLine');
 
// ----------------------------------------------------------------------------
 
export default { newInstance, extend, ...STATIC, ...Constants };