All files / Sources/Common/DataModel/Triangle index.js

71.82% Statements 232/323
70.62% Branches 101/143
90% Functions 9/10
72.01% Lines 229/318

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595                        359x 359x 359x 359x 359x 359x   359x 359x 359x       340x 340x 340x 339x 339x 339x         147x 147x 147x 147x   147x 147x     147x 147x 147x 147x       147x               147x   48x       99x               99x   16x     83x           17x   17x         66x 66x     66x 66x 66x 66x         66x 66x   66x 66x 66x 66x 66x 66x 66x 198x 198x     198x 198x 132x 48x   132x     198x 198x 132x 48x   132x             66x             66x               66x           66x                   66x   31x 31x 31x   66x   19x 19x 19x         66x   25x   41x 14x   4x 4x 4x 4x     10x 10x 10x 10x     27x   10x 10x 10x 10x     17x 17x 17x 17x       41x 41x   41x             1x                       62x   62x 62x 22x           22x 22x 22x     22x 22x 22x 22x 22x 22x 22x 22x 22x 22x   22x 22x 22x 22x 22x 22x 22x 9x 9x 9x 9x       13x           13x 13x 6x 6x   7x 7x                                                                                                 62x   16x     16x 16x 16x 16x   16x 16x 16x 16x 16x 16x       16x 16x 16x 16x   16x 16x         16x 16x 16x   16x     16x         16x 16x   48x     48x   48x 16x 16x       16x 48x 32x       16x 32x 32x 32x   16x 16x             16x 16x     16x 16x 16x   16x                 8x 8x 8x 8x 8x   8x     8x 8x                                   8x                                   8x                                   8x 4x           4x 4x 3x           3x 1x 1x           1x     8x     16x     62x 1x 1x 1x 1x 1x 1x 1x   1x 3x     1x 1x 1x     62x   1x 1x 1x 1x 1x   1x 3x   3x       3x   3x       1x               1x         62x   62x   62x         1x          
import macro from 'vtk.js/Sources/macros';
import vtkCell from 'vtk.js/Sources/Common/DataModel/Cell';
import * as vtkMath from 'vtk.js/Sources/Common/Core/Math';
import vtkLine from 'vtk.js/Sources/Common/DataModel/Line';
import vtkPlane from 'vtk.js/Sources/Common/DataModel/Plane';
 
// ----------------------------------------------------------------------------
// Global methods
// ----------------------------------------------------------------------------
 
function computeNormalDirection(v1, v2, v3, n) {
  // order is important!!! maintain consistency with triangle vertex order
  const ax = v3[0] - v2[0];
  const ay = v3[1] - v2[1];
  const az = v3[2] - v2[2];
  const bx = v1[0] - v2[0];
  const by = v1[1] - v2[1];
  const bz = v1[2] - v2[2];
 
  n[0] = ay * bz - az * by;
  n[1] = az * bx - ax * bz;
  n[2] = ax * by - ay * bx;
}
 
function computeNormal(v1, v2, v3, n) {
  computeNormalDirection(v1, v2, v3, n);
  const length = Math.sqrt(n[0] * n[0] + n[1] * n[1] + n[2] * n[2]);
  if (length !== 0.0) {
    n[0] /= length;
    n[1] /= length;
    n[2] /= length;
  }
}
 
function intersectWithTriangle(p1, q1, r1, p2, q2, r2, tolerance = 1e-6) {
  let coplanar = false;
  const pt1 = [];
  const pt2 = [];
  const surfaceId = [];
 
  const n1 = [];
  const n2 = [];
 
  // Compute supporting plane normals.
  computeNormal(p1, q1, r1, n1);
  computeNormal(p2, q2, r2, n2);
  const s1 = -vtkMath.dot(n1, p1);
  const s2 = -vtkMath.dot(n2, p2);
 
  // Compute signed distances of points p1, q1, r1 from supporting
  // plane of second triangle.
  const dist1 = [
    vtkMath.dot(n2, p1) + s2,
    vtkMath.dot(n2, q1) + s2,
    vtkMath.dot(n2, r1) + s2,
  ];
 
  // If signs of all points are the same, all the points lie on the
  // same side of the supporting plane, and we can exit early.
  if (dist1[0] * dist1[1] > tolerance && dist1[0] * dist1[2] > tolerance) {
    // vtkDebugMacro(<<"Same side supporting plane 1!");
    return { intersect: false, coplanar, pt1, pt2, surfaceId };
  }
  // Do the same for p2, q2, r2 and supporting plane of first
  // triangle.
  const dist2 = [
    vtkMath.dot(n1, p2) + s1,
    vtkMath.dot(n1, q2) + s1,
    vtkMath.dot(n1, r2) + s1,
  ];
 
  // If signs of all points are the same, all the points lie on the
  // same side of the supporting plane, and we can exit early.
  if (dist2[0] * dist2[1] > tolerance && dist2[0] * dist2[2] > tolerance) {
    // vtkDebugMacro(<<"Same side supporting plane 2!");
    return { intersect: false, coplanar, pt1, pt2, surfaceId };
  }
  // Check for coplanarity of the supporting planes.
  if (
    Math.abs(n1[0] - n2[0]) < 1e-9 &&
    Math.abs(n1[1] - n2[1]) < 1e-9 &&
    Math.abs(n1[2] - n2[2]) < 1e-9 &&
    Math.abs(s1 - s2) < 1e-9
  ) {
    coplanar = true;
    // vtkDebugMacro(<<"Coplanar!");
    return { intersect: false, coplanar, pt1, pt2, surfaceId };
  }
 
  // There are more efficient ways to find the intersection line (if
  // it exists), but this is clear enough.
  const pts1 = [p1, q1, r1];
  const pts2 = [p2, q2, r2];
 
  // Find line of intersection (L = p + t*v) between two planes.
  const n1n2 = vtkMath.dot(n1, n2);
  const a = (s1 - s2 * n1n2) / (n1n2 * n1n2 - 1.0);
  const b = (s2 - s1 * n1n2) / (n1n2 * n1n2 - 1.0);
  const p = [
    a * n1[0] + b * n2[0],
    a * n1[1] + b * n2[1],
    a * n1[2] + b * n2[2],
  ];
  const v = vtkMath.cross(n1, n2, []);
  vtkMath.normalize(v);
 
  let index1 = 0;
  let index2 = 0;
  const t1 = [];
  const t2 = [];
  let ts1 = 50;
  let ts2 = 50;
  for (let i = 0; i < 3; i++) {
    const id1 = i;
    const id2 = (i + 1) % 3;
 
    // Find t coordinate on line of intersection between two planes.
    const val1 = vtkPlane.intersectWithLine(pts1[id1], pts1[id2], p2, n2);
    if (val1.intersection && val1.t > 0 - tolerance && val1.t < 1 + tolerance) {
      if (val1.t < 1 + tolerance && val1.t > 1 - tolerance) {
        ts1 = index1;
      }
      t1[index1++] = vtkMath.dot(val1.x, v) - vtkMath.dot(p, v);
    }
 
    const val2 = vtkPlane.intersectWithLine(pts2[id1], pts2[id2], p1, n1);
    if (val2.intersection && val2.t > 0 - tolerance && val2.t < 1 + tolerance) {
      if (val2.t < 1 + tolerance && val2.t > 1 - tolerance) {
        ts2 = index2;
      }
      t2[index2++] = vtkMath.dot(val2.x, v) - vtkMath.dot(p, v);
    }
  }
 
  // If the value of the index is greater than 2, the intersecting point
  // actually is intersected by all three edges. In this case, set the two
  // edges to the two edges where the intersecting point is not the end point
  Iif (index1 > 2) {
    index1--;
    // swap
    const t12 = t1[2];
    t1[2] = t1[ts1];
    t1[ts1] = t12;
  }
  Iif (index2 > 2) {
    index2--;
    const t22 = t2[2];
    t2[2] = t2[ts2];
    t2[ts2] = t22;
  }
  // Check if only one edge or all edges intersect the supporting
  // planes intersection.
  Iif (index1 !== 2 || index2 !== 2) {
    // vtkDebugMacro(<<"Only one edge intersecting!");
    return { intersect: false, coplanar, pt1, pt2, surfaceId };
  }
 
  // Check for NaNs
  Iif (
    Number.isNaN(t1[0]) ||
    Number.isNaN(t1[1]) ||
    Number.isNaN(t2[0]) ||
    Number.isNaN(t2[1])
  ) {
    // vtkWarningMacro(<<"NaNs!");
    return { intersect: false, coplanar, pt1, pt2, surfaceId };
  }
 
  if (t1[0] > t1[1]) {
    // swap
    const t11 = t1[1];
    t1[1] = t1[0];
    t1[0] = t11;
  }
  if (t2[0] > t2[1]) {
    // swap
    const t21 = t2[1];
    t2[1] = t2[0];
    t2[0] = t21;
  }
  // Handle the different interval configuration cases.
  let tt1;
  let tt2;
  if (t1[1] < t2[0] || t2[1] < t1[0]) {
    // vtkDebugMacro(<<"No Overlap!");
    return { intersect: false, coplanar, pt1, pt2, surfaceId }; // No overlap
  }
  if (t1[0] < t2[0]) {
    if (t1[1] < t2[1]) {
      // First point on surface 2, second point on surface 1
      surfaceId[0] = 2;
      surfaceId[1] = 1;
      tt1 = t2[0];
      tt2 = t1[1];
    } else {
      // Both points belong to lines on surface 2
      surfaceId[0] = 2;
      surfaceId[1] = 2;
      tt1 = t2[0];
      tt2 = t2[1];
    }
  } // t1[0] >= t2[0]
  else if (t1[1] < t2[1]) {
    // Both points belong to lines on surface 1
    surfaceId[0] = 1;
    surfaceId[1] = 1;
    tt1 = t1[0];
    tt2 = t1[1];
  } else {
    // First point on surface 1, second point on surface 2
    surfaceId[0] = 1;
    surfaceId[1] = 2;
    tt1 = t1[0];
    tt2 = t2[1];
  }
 
  // Create actual intersection points.
  vtkMath.multiplyAccumulate(p, v, tt1, pt1);
  vtkMath.multiplyAccumulate(p, v, tt2, pt2);
 
  return { intersect: true, coplanar, pt1, pt2, surfaceId };
}
 
// ----------------------------------------------------------------------------
// Static API
// ----------------------------------------------------------------------------
 
export const STATIC = {
  computeNormalDirection,
  computeNormal,
  intersectWithTriangle,
};
 
// ----------------------------------------------------------------------------
// vtkTriangle methods
// ----------------------------------------------------------------------------
 
function vtkTriangle(publicAPI, model) {
  // Set our className
  model.classHierarchy.push('vtkTriangle');
 
  publicAPI.getCellDimension = () => 2;
  publicAPI.intersectWithLine = (p1, p2, tol, x, pcoords) => {
    const outObj = {
      subId: 0,
      t: Number.MAX_VALUE,
      intersect: 0,
      betweenPoints: false,
    };
    pcoords[2] = 0.0;
    const closestPoint = [];
    const tol2 = tol * tol;
 
    // Get normal for triangle
    const pt1 = [];
    const pt2 = [];
    const pt3 = [];
    model.points.getPoint(0, pt1);
    model.points.getPoint(1, pt2);
    model.points.getPoint(2, pt3);
    const n = [];
    const weights = [];
    computeNormal(pt1, pt2, pt3, n);
    if (n[0] !== 0 || n[1] !== 0 || n[2] !== 0) {
      // Intersect plane of triangle with line
      const plane = vtkPlane.intersectWithLine(p1, p2, pt1, n);
      outObj.betweenPoints = plane.betweenPoints;
      outObj.t = plane.t;
      x[0] = plane.x[0];
      x[1] = plane.x[1];
      x[2] = plane.x[2];
      if (!plane.intersection) {
        pcoords[0] = 0.0;
        pcoords[1] = 0.0;
        outObj.intersect = 0;
        return outObj;
      }
 
      // Evaluate position
      const inside = publicAPI.evaluatePosition(
        x,
        closestPoint,
        pcoords,
        weights
      );
      if (inside.evaluation >= 0) {
        if (inside.dist2 <= tol2) {
          outObj.intersect = 1;
          return outObj;
        }
        outObj.intersect = inside.evaluation;
        return outObj;
      }
    }
 
    // Normals are null, so the triangle is degenerated and
    // we still need to check intersection between line and
    // the longest edge.
    const dist2Pt1Pt2 = vtkMath.distance2BetweenPoints(pt1, pt2);
    const dist2Pt2Pt3 = vtkMath.distance2BetweenPoints(pt2, pt3);
    const dist2Pt3Pt1 = vtkMath.distance2BetweenPoints(pt3, pt1);
    if (!model.line) {
      model.line = vtkLine.newInstance();
    }
    if (dist2Pt1Pt2 > dist2Pt2Pt3 && dist2Pt1Pt2 > dist2Pt3Pt1) {
      model.line.getPoints().setPoint(0, pt1);
      model.line.getPoints().setPoint(1, pt2);
    } else if (dist2Pt2Pt3 > dist2Pt3Pt1 && dist2Pt2Pt3 > dist2Pt1Pt2) {
      model.line.getPoints().setPoint(0, pt2);
      model.line.getPoints().setPoint(1, pt3);
    } else {
      model.line.getPoints().setPoint(0, pt3);
      model.line.getPoints().setPoint(1, pt1);
    }
 
    const intersectLine = model.line.intersectWithLine(p1, p2, tol, x, pcoords);
    outObj.betweenPoints = intersectLine.betweenPoints;
    outObj.t = intersectLine.t;
    if (intersectLine.intersect) {
      const pt3Pt1 = [];
      const pt3Pt2 = [];
      const pt3X = [];
      // Compute r and s manually, using dot and norm.
      for (let i = 0; i < 3; i++) {
        pt3Pt1[i] = pt1[i] - pt3[i];
        pt3Pt2[i] = pt2[i] - pt3[i];
        pt3X[i] = x[i] - pt3[i];
      }
      pcoords[0] = vtkMath.dot(pt3X, pt3Pt1) / dist2Pt3Pt1;
      pcoords[1] = vtkMath.dot(pt3X, pt3Pt2) / dist2Pt2Pt3;
      outObj.intersect = 1;
      return outObj;
    }
 
    pcoords[0] = 0.0;
    pcoords[1] = 0.0;
    outObj.intersect = 0;
    return outObj;
  };
 
  publicAPI.evaluatePosition = (x, closestPoint, pcoords, weights) => {
    // will return obj
    const outObj = { subId: 0, dist2: 0, evaluation: -1 };
    let i;
    let j;
    const pt1 = [];
    const pt2 = [];
    const pt3 = [];
    const n = [];
    let fabsn;
    const rhs = [];
    const c1 = [];
    const c2 = [];
    let det = 0;
    let idx = 0;
    const indices = [];
    let dist2Point;
    let dist2Line1;
    let dist2Line2;
    let closest = [];
    const closestPoint1 = [];
    const closestPoint2 = [];
    const cp = [];
 
    outObj.subId = 0;
    pcoords[2] = 0.0;
 
    // Get normal for triangle, only the normal direction is needed, i.e. the
    // normal need not be normalized (unit length)
    //
    model.points.getPoint(1, pt1);
    model.points.getPoint(2, pt2);
    model.points.getPoint(0, pt3);
 
    computeNormalDirection(pt1, pt2, pt3, n);
 
    // Project point to plane
    vtkPlane.generalizedProjectPoint(x, pt1, n, cp);
 
    // Construct matrices.  Since we have over determined system, need to find
    // which 2 out of 3 equations to use to develop equations. (Any 2 should
    // work since we've projected point to plane.)
    let maxComponent = 0.0;
    for (i = 0; i < 3; i++) {
      // trying to avoid an expensive call to fabs()
      Iif (n[i] < 0) {
        fabsn = -n[i];
      } else {
        fabsn = n[i];
      }
      if (fabsn > maxComponent) {
        maxComponent = fabsn;
        idx = i;
      }
    }
 
    for (j = 0, i = 0; i < 3; i++) {
      if (i !== idx) {
        indices[j++] = i;
      }
    }
 
    for (i = 0; i < 2; i++) {
      rhs[i] = cp[indices[i]] - pt3[indices[i]];
      c1[i] = pt1[indices[i]] - pt3[indices[i]];
      c2[i] = pt2[indices[i]] - pt3[indices[i]];
    }
    det = vtkMath.determinant2x2(c1, c2);
    Iif (det === 0.0) {
      pcoords[0] = 0.0;
      pcoords[1] = 0.0;
      outObj.evaluation = -1;
      return outObj;
    }
 
    pcoords[0] = vtkMath.determinant2x2(rhs, c2) / det;
    pcoords[1] = vtkMath.determinant2x2(c1, rhs) / det;
 
    // Okay, now find closest point to element
    weights[0] = 1 - (pcoords[0] + pcoords[1]);
    weights[1] = pcoords[0];
    weights[2] = pcoords[1];
 
    if (
      weights[0] >= 0.0 &&
      weights[0] <= 1.0 &&
      weights[1] >= 0.0 &&
      weights[1] <= 1.0 &&
      weights[2] >= 0.0 &&
      weights[2] <= 1.0
    ) {
      // projection distance
      if (closestPoint) {
        outObj.dist2 = vtkMath.distance2BetweenPoints(cp, x);
        closestPoint[0] = cp[0];
        closestPoint[1] = cp[1];
        closestPoint[2] = cp[2];
      }
      outObj.evaluation = 1;
    } else {
      let t;
      if (closestPoint) {
        Iif (weights[1] < 0.0 && weights[2] < 0.0) {
          dist2Point = vtkMath.distance2BetweenPoints(x, pt3);
          dist2Line1 = vtkLine.distanceToLine(x, pt1, pt3, t, closestPoint1);
          dist2Line2 = vtkLine.distanceToLine(x, pt3, pt2, t, closestPoint2);
          if (dist2Point < dist2Line1) {
            outObj.dist2 = dist2Point;
            closest = pt3;
          } else {
            outObj.dist2 = dist2Line1;
            closest = closestPoint1;
          }
          if (dist2Line2 < outObj.dist2) {
            outObj.dist2 = dist2Line2;
            closest = closestPoint2;
          }
          for (i = 0; i < 3; i++) {
            closestPoint[i] = closest[i];
          }
        } else Iif (weights[2] < 0.0 && weights[0] < 0.0) {
          dist2Point = vtkMath.distance2BetweenPoints(x, pt1);
          dist2Line1 = vtkLine.distanceToLine(x, pt1, pt3, t, closestPoint1);
          dist2Line2 = vtkLine.distanceToLine(x, pt1, pt2, t, closestPoint2);
          if (dist2Point < dist2Line1) {
            outObj.dist2 = dist2Point;
            closest = pt1;
          } else {
            outObj.dist2 = dist2Line1;
            closest = closestPoint1;
          }
          if (dist2Line2 < outObj.dist2) {
            outObj.dist2 = dist2Line2;
            closest = closestPoint2;
          }
          for (i = 0; i < 3; i++) {
            closestPoint[i] = closest[i];
          }
        } else Iif (weights[1] < 0.0 && weights[0] < 0.0) {
          dist2Point = vtkMath.distance2BetweenPoints(x, pt2);
          dist2Line1 = vtkLine.distanceToLine(x, pt2, pt3, t, closestPoint1);
          dist2Line2 = vtkLine.distanceToLine(x, pt1, pt2, t, closestPoint2);
          if (dist2Point < dist2Line1) {
            outObj.dist2 = dist2Point;
            closest = pt2;
          } else {
            outObj.dist2 = dist2Line1;
            closest = closestPoint1;
          }
          if (dist2Line2 < outObj.dist2) {
            outObj.dist2 = dist2Line2;
            closest = closestPoint2;
          }
          for (i = 0; i < 3; i++) {
            closestPoint[i] = closest[i];
          }
        } else if (weights[0] < 0.0) {
          const lineDistance = vtkLine.distanceToLine(
            x,
            pt1,
            pt2,
            closestPoint
          );
          outObj.dist2 = lineDistance.distance;
        } else if (weights[1] < 0.0) {
          const lineDistance = vtkLine.distanceToLine(
            x,
            pt2,
            pt3,
            closestPoint
          );
          outObj.dist2 = lineDistance.distance;
        } else if (weights[2] < 0.0) {
          const lineDistance = vtkLine.distanceToLine(
            x,
            pt1,
            pt3,
            closestPoint
          );
          outObj.dist2 = lineDistance.distance;
        }
      }
      outObj.evaluation = 0;
    }
 
    return outObj;
  };
 
  publicAPI.evaluateLocation = (pcoords, x, weights) => {
    const p0 = [];
    const p1 = [];
    const p2 = [];
    model.points.getPoint(0, p0);
    model.points.getPoint(1, p1);
    model.points.getPoint(2, p2);
    const u3 = 1.0 - pcoords[0] - pcoords[1];
 
    for (let i = 0; i < 3; i++) {
      x[i] = p0[i] * u3 + p1[i] * pcoords[0] + p2[i] * pcoords[1];
    }
 
    weights[0] = u3;
    weights[1] = pcoords[0];
    weights[2] = pcoords[1];
  };
 
  publicAPI.getParametricDistance = (pcoords) => {
    let pDist;
    let pDistMax = 0.0;
    const pc = [];
    pc[0] = pcoords[0];
    pc[1] = pcoords[1];
    pc[2] = 1.0 - pcoords[0] - pcoords[1];
 
    for (let i = 0; i < 3; i++) {
      Iif (pc[i] < 0.0) {
        pDist = -pc[i];
      } else Iif (pc[i] > 1.0) {
        pDist = pc[i] - 1.0;
      } else {
        // inside the cell in the parametric direction
        pDist = 0.0;
      }
      Iif (pDist > pDistMax) {
        pDistMax = pDist;
      }
    }
    return pDistMax;
  };
}
 
// ----------------------------------------------------------------------------
// Object factory
// ----------------------------------------------------------------------------
 
const DEFAULT_VALUES = {};
 
// ----------------------------------------------------------------------------
 
export function extend(publicAPI, model, initialValues = {}) {
  Object.assign(model, DEFAULT_VALUES, initialValues);
 
  vtkCell.extend(publicAPI, model, initialValues);
 
  vtkTriangle(publicAPI, model);
}
 
// ----------------------------------------------------------------------------
 
export const newInstance = macro.newInstance(extend, 'vtkTriangle');
 
// ----------------------------------------------------------------------------
 
export default { newInstance, extend, ...STATIC };