All files / Sources/Common/Transform/LandmarkTransform index.js

68.57% Statements 120/175
61.9% Branches 13/21
100% Functions 3/3
69.04% Lines 116/168

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321          1x               2x     2x 2x 2x                       2x 2x 2x 2x 4x 4x 4x 4x 4x 4x 4x 4x   2x 2x 2x 2x 2x 2x       2x 1x 1x 1x 1x 1x         1x 1x   1x 1x 1x 1x 1x   3x 3x 3x 3x     3x 3x 3x 3x     3x 9x 9x 9x       9x             3x 3x     1x                           1x       1x   1x 1x 1x 1x     1x 1x 1x   1x 1x 1x         1x           1x   1x                     1x                                                                                                                   1x 1x 1x 1x         1x 1x 1x 1x   1x 1x 1x   1x 1x 1x   1x 1x 1x   1x 1x 1x   1x 1x 1x     1x 1x 3x 3x 3x               1x       1x       1x       1x 1x 1x     1x 1x 1x 1x   1x       2x             1x             2x 2x     2x   2x 2x   2x         1x          
import { mat3, mat4 } from 'gl-matrix';
import Constants from 'vtk.js/Sources/Common/Transform/LandmarkTransform/Constants';
import macro from 'vtk.js/Sources/macros';
import * as vtkMath from 'vtk.js/Sources/Common/Core/Math';
 
const { Mode } = Constants;
 
// ----------------------------------------------------------------------------
// vtkLandmarkTransform methods
// ----------------------------------------------------------------------------
 
function vtkLandmarkTransform(publicAPI, model) {
  // Set our className
  model.classHierarchy.push('vtkLandmarkTransform');
 
  function update() {
    mat4.identity(model.matrix);
    const N_PTS = model.sourceLandmark.getNumberOfPoints();
    Iif (
      model.targetLandmark.getNumberOfPoints() !== N_PTS ||
      model.sourceLandmark === null ||
      model.targetLandmark === null ||
      N_PTS === 0
    ) {
      console.error('Error : Bad inputs of vtkLandmarkTransform');
      return model.matrix;
    }
 
    // -- find the centroid of each set --
 
    const sourceCentroid = [0, 0, 0];
    const targetCentroid = [0, 0, 0];
    const p = [0, 0, 0];
    for (let i = 0; i < N_PTS; i++) {
      model.sourceLandmark.getPoint(i, p);
      sourceCentroid[0] += p[0];
      sourceCentroid[1] += p[1];
      sourceCentroid[2] += p[2];
      model.targetLandmark.getPoint(i, p);
      targetCentroid[0] += p[0];
      targetCentroid[1] += p[1];
      targetCentroid[2] += p[2];
    }
    sourceCentroid[0] /= N_PTS;
    sourceCentroid[1] /= N_PTS;
    sourceCentroid[2] /= N_PTS;
    targetCentroid[0] /= N_PTS;
    targetCentroid[1] /= N_PTS;
    targetCentroid[2] /= N_PTS;
 
    // -- if only one point, stop right here
 
    if (N_PTS === 1) {
      mat4.identity(model.matrix);
      model.matrix[12] = targetCentroid[0] - sourceCentroid[0];
      model.matrix[13] = targetCentroid[1] - sourceCentroid[1];
      model.matrix[14] = targetCentroid[2] - sourceCentroid[2];
      return model.matrix;
    }
 
    // -- build the 3x3 matrix M --
 
    const M = new Float64Array(9);
    const AAT = new Float64Array(9);
 
    const a = [0, 0, 0];
    const b = [0, 0, 0];
    let sa = 0.0;
    let sb = 0.0;
    for (let pt = 0; pt < N_PTS; pt++) {
      // get the origin-centred point (a) in the source set
      model.sourceLandmark.getPoint(pt, a);
      a[0] -= sourceCentroid[0];
      a[1] -= sourceCentroid[1];
      a[2] -= sourceCentroid[2];
 
      // get the origin-centred point (b) in the target set
      model.targetLandmark.getPoint(pt, b);
      b[0] -= targetCentroid[0];
      b[1] -= targetCentroid[1];
      b[2] -= targetCentroid[2];
 
      // accumulate the products a*T(b) into the matrix M
      for (let i = 0; i < 3; i++) {
        M[3 * 0 + i] += a[i] * b[0];
        M[3 * 1 + i] += a[i] * b[1];
        M[3 * 2 + i] += a[i] * b[2];
 
        // for the affine transform, compute ((a.a^t)^-1 . a.b^t)^t.
        // a.b^t is already in M.  here we put a.a^t in AAT.
        Iif (model.mode === Mode.AFFINE) {
          AAT[3 * 0 + i] += a[i] * a[0];
          AAT[3 * 1 + i] += a[i] * a[1];
          AAT[3 * 2 + i] += a[i] * a[2];
        }
      }
      // accumulate scale factors (if desired)
      sa += a[0] * a[0] + a[1] * a[1] + a[2] * a[2];
      sb += b[0] * b[0] + b[1] * b[1] + b[2] * b[2];
    }
 
    Iif (model.mode === Mode.AFFINE) {
      // AAT = (a.a^t)^-1
      mat3.invert(AAT, AAT);
 
      // M = (a.a^t)^-1 . a.b^t
      mat3.multiply(M, AAT, M);
 
      // this->Matrix = M^t
      for (let i = 0; i < 3; ++i) {
        for (let j = 0; j < 3; ++j) {
          model.matrix[4 * j + i] = M[4 * i + j];
        }
      }
    } else {
      const scale = Math.sqrt(sb / sa);
 
      // -- build the 4x4 matrix N --
 
      const N = new Float64Array(16);
      // on-diagonal elements
      N[0] = M[0] + M[4] + M[8];
      N[5] = M[0] - M[4] - M[8];
      N[10] = -M[0] + M[4] - M[8];
      N[15] = -M[0] - M[4] + M[8];
      // off-diagonal elements
      /* eslint-disable no-multi-assign */
      N[4] = N[1] = M[7] - M[5];
      N[8] = N[2] = M[2] - M[6];
      N[12] = N[3] = M[3] - M[1];
 
      N[9] = N[6] = M[3] + M[1];
      N[13] = N[7] = M[2] + M[6];
      N[14] = N[11] = M[7] + M[5];
      /* eslint-enable no-multi-assign */
 
      // -- eigen-decompose N (is symmetric) --
      // prettier-ignore
      const eigenVectors = [
        0.0, 0.0, 0.0, 0.0,
        0.0, 0.0, 0.0, 0.0,
        0.0, 0.0, 0.0, 0.0,
        0.0, 0.0, 0.0, 0.0,
      ];
      const eigenValues = [0.0, 0.0, 0.0, 0.0];
 
      vtkMath.jacobiN(N, 4, eigenValues, eigenVectors);
 
      // The eigenvector with the largest eigenvalue is the quaternion we want
      // (they are sorted in decreasing order for us by JacobiN)
      let w;
      let x;
      let y;
      let z;
 
      // first; if points are collinear, choose the quaternion that
      // results in the smallest rotation
      Iif (eigenValues[0] === eigenValues[1] || N_PTS === 2) {
        const s0 = [0, 0, 0];
        const t0 = [0, 0, 0];
        const s1 = [0, 0, 0];
        const t1 = [0, 0, 0];
        model.sourceLandmark.getPoint(0, s0);
        model.targetLandmark.getPoint(0, t0);
        model.sourceLandmark.getPoint(1, s1);
        model.targetLandmark.getPoint(1, t1);
 
        const ds = [0, 0, 0];
        const dt = [0, 0, 0];
        let rs = 0;
        let rt = 0;
        for (let i = 0; i < 3; i++) {
          ds[i] = s1[i] - s0[i]; // vector between points
          rs = ds[i] * ds[i] + rs;
          dt[i] = t1[i] - t0[i];
          rt = dt[i] * dt[i] + rt;
        }
 
        // normalize the two vectors
        rs = Math.sqrt(rs);
        ds[0] /= rs;
        ds[1] /= rs;
        ds[2] /= rs;
        rt = Math.sqrt(rt);
        dt[0] /= rt;
        dt[1] /= rt;
        dt[2] /= rt;
 
        // take dot & cross product
        w = ds[0] * dt[0] + ds[1] * dt[1] + ds[2] * dt[2];
        x = ds[1] * dt[2] - ds[2] * dt[1];
        y = ds[2] * dt[0] - ds[0] * dt[2];
        z = ds[0] * dt[1] - ds[1] * dt[0];
 
        let r = Math.sqrt(x * x + y * y + z * z);
        const theta = Math.atan2(r, w);
 
        // construct quaternion
        w = Math.cos(theta / 2);
        if (r !== 0) {
          r = Math.sin(theta / 2) / r;
          x *= r;
          y *= r;
          z *= r;
        } else {
          // rotation by 180 degrees : special case
          // Rotate around a vector perpendicular to ds
          vtkMath.perpendiculars(ds, dt, 0, 0);
          r = Math.sin(theta / 2);
          x = dt[0] * r;
          y = dt[1] * r;
          z = dt[2] * r;
        }
      } else {
        // points are not collinear
        w = eigenVectors[0];
        x = eigenVectors[4];
        y = eigenVectors[8];
        z = eigenVectors[12];
      }
 
      // convert quaternion to a rotation matrix
 
      const ww = w * w;
      const wx = w * x;
      const wy = w * y;
      const wz = w * z;
 
      const xx = x * x;
      const yy = y * y;
      const zz = z * z;
 
      const xy = x * y;
      const xz = x * z;
      const yz = y * z;
 
      model.matrix[0] = ww + xx - yy - zz;
      model.matrix[1] = 2.0 * (wz + xy);
      model.matrix[2] = 2.0 * (-wy + xz);
 
      model.matrix[4] = 2.0 * (-wz + xy);
      model.matrix[5] = ww - xx + yy - zz;
      model.matrix[6] = 2.0 * (wx + yz);
 
      model.matrix[8] = 2.0 * (wy + xz);
      model.matrix[9] = 2.0 * (-wx + yz);
      model.matrix[10] = ww - xx - yy + zz;
 
      // add in the scale factor (if desired)
      if (model.mode !== Mode.RIGID_BODY) {
        for (let i = 0; i < 3; i++) {
          model.matrix[4 * 0 + i] = model.matrix[4 * 0 + i] * scale;
          model.matrix[4 * 1 + i] = model.matrix[4 * 1 + i] * scale;
          model.matrix[4 * 2 + i] = model.matrix[4 * 2 + i] * scale;
        }
      }
    }
 
    // the translation is given by the difference in the transformed source
    // centroid and the target centroid
    const sx =
      model.matrix[0] * sourceCentroid[0] +
      model.matrix[4] * sourceCentroid[1] +
      model.matrix[8] * sourceCentroid[2];
    const sy =
      model.matrix[1] * sourceCentroid[0] +
      model.matrix[5] * sourceCentroid[1] +
      model.matrix[9] * sourceCentroid[2];
    const sz =
      model.matrix[2] * sourceCentroid[0] +
      model.matrix[6] * sourceCentroid[1] +
      model.matrix[10] * sourceCentroid[2];
 
    model.matrix[12] = targetCentroid[0] - sx;
    model.matrix[13] = targetCentroid[1] - sy;
    model.matrix[14] = targetCentroid[2] - sz;
 
    // fill the bottom row of the 4x4 matrix
    model.matrix[3] = 0.0;
    model.matrix[7] = 0.0;
    model.matrix[11] = 0.0;
    model.matrix[15] = 1.0;
 
    return model.matrix;
  }
 
  // Expose method
  publicAPI.update = update;
}
 
// ----------------------------------------------------------------------------
// Object factory
// ----------------------------------------------------------------------------
 
const DEFAULT_VALUES = {
  mode: Mode.SIMILARITY,
};
 
// ----------------------------------------------------------------------------
 
export function extend(publicAPI, model, initialValues = {}) {
  Object.assign(model, DEFAULT_VALUES, initialValues);
  macro.obj(publicAPI, model);
 
  // Internal objects initialization
  model.matrix = mat4.identity(new Float64Array(16));
 
  macro.setGet(publicAPI, model, ['sourceLandmark', 'targetLandmark', 'mode']);
  macro.get(publicAPI, model, ['matrix']);
 
  vtkLandmarkTransform(publicAPI, model);
}
 
// ----------------------------------------------------------------------------
 
export const newInstance = macro.newInstance(extend, 'vtkLandmarkTransform');
 
// ----------------------------------------------------------------------------
 
export default { newInstance, extend, ...Constants };