Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 | 1x 3x 3x 3x 3x 11x | import macro from 'vtk.js/Sources/macros'; import vtkPoints from 'vtk.js/Sources/Common/Core/Points'; import * as vtkMath from 'vtk.js/Sources/Common/Core/Math'; import vtkLine from 'vtk.js/Sources/Common/DataModel/Line'; import vtkPolygon from 'vtk.js/Sources/Common/DataModel/Polygon'; import vtkIncrementalOctreePointLocator from 'vtk.js/Sources/Common/DataModel/IncrementalOctreePointLocator'; import { VtkDataTypes } from 'vtk.js/Sources/Common/Core/DataArray/Constants'; import { CCS_POLYGON_TOLERANCE } from './Constants'; import { PolygonWithPointIntersectionState } from '../../../Common/DataModel/Polygon/Constants'; const { vtkErrorMacro } = macro; /** * Reverse the elements between the indices firstIdx and lastIdx of the given array arr. * * @param {Array|TypedArray} arr * @param {Number} firstIdx * @param {Number} lastIdx */ export function reverseElements( arr, firstIdx = undefined, lastIdx = undefined ) { const first = firstIdx ?? 0; const last = lastIdx ?? arr.length - 1; const mid = first + Math.floor((last - first) / 2); for (let i = first; i <= mid; ++i) { [arr[i], arr[last - (i - first)]] = [arr[last - (i - first)], arr[i]]; } } // --------------------------------------------------- /** * Compute the quality of a triangle. * * @param {Vector3} p0 * @param {Vector3} p1 * @param {Vector3} p2 * @param {Vector3} normal * @returns {Number} */ export function vtkCCSTriangleQuality(p0, p1, p2, normal) { const u = []; const v = []; const w = []; vtkMath.subtract(p1, p0, u); vtkMath.subtract(p2, p1, v); vtkMath.subtract(p0, p2, w); const area2 = (u[1] * v[2] - u[2] * v[1]) * normal[0] + (u[2] * v[0] - u[0] * v[2]) * normal[1] + (u[0] * v[1] - u[1] * v[0]) * normal[2]; let perim = Math.sqrt(u[0] * u[0] + u[1] * u[1] + u[2] * u[2]) + Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]) + Math.sqrt(w[0] * w[0] + w[1] * w[1] + w[2] * w[2]); perim *= perim; // square the perimeter perim = perim !== 0 ? perim : 1.0; // use a normalization factor so equilateral quality is 1.0 return (area2 / perim) * 10.392304845413264; } // --------------------------------------------------- /** * Insert a triangle, and subdivide that triangle if one of * its edges originally had more than two points before * vtkCCSFindTrueEdges was called. Is called by vtkCCSTriangulate. * * @param {vtkCellArray} polys * @param {Array|TypedArray} poly * @param {Vector3} trids * @param {Array|TypedArray} polyEdges * @param {Array|TypedArray} originalEdges */ export function vtkCCSInsertTriangle( polys, poly, trids, polyEdges, originalEdges ) { const nextVert = [1, 2, 0]; // To store how many of originalEdges match let edgeCount = 0; const edgeLocs = [-1, -1, -1]; // Check for original edge matches for (let vert = 0; vert < 3; vert++) { const currId = trids[vert]; const edgeLoc = polyEdges[currId]; if (edgeLoc >= 0) { let nextId = currId + 1; if (nextId === poly.length) { nextId = 0; } // Is the triangle edge a polygon edge? if (nextId === trids[nextVert[vert]]) { edgeLocs[vert] = edgeLoc; edgeCount++; } } } if (edgeCount === 0) { // No special edge handling, so just do one triangle polys.insertNextCell([poly[trids[0]], poly[trids[1]], poly[trids[2]]]); } else { // Make triangle fans for edges with extra points const edgePts = [ [poly[trids[0]], poly[trids[1]]], [poly[trids[1]], poly[trids[2]]], [poly[trids[2]], poly[trids[0]]], ]; // Find out which edge has the most extra points let maxPoints = 0; let currSide = 0; for (let i = 0; i < 3; i++) { if (edgeLocs[i] >= 0) { const edgeLoc = edgeLocs[i]; const npts = originalEdges[edgeLoc]; const pts = originalEdges.slice(edgeLoc + 1, edgeLoc + 1 + npts); if (!(edgePts[i][0] === pts[0] || edgePts[i][1] === pts[npts - 1])) { vtkErrorMacro('assertion error in vtkCCSInsertTriangle'); } if (npts > maxPoints) { maxPoints = npts; currSide = i; } edgePts[i] = pts; } } // Find the edges before/after the edge with most points const prevSide = (currSide + 2) % 3; const nextSide = (currSide + 1) % 3; // If other edges have only 2 points, nothing to do with them const prevNeeded = edgePts[prevSide].length > 2; const nextNeeded = edgePts[nextSide].length > 2; // The tail is the common point in the triangle fan const tailPtIds = []; tailPtIds[prevSide] = edgePts[currSide][1]; tailPtIds[currSide] = edgePts[prevSide][0]; tailPtIds[nextSide] = edgePts[currSide][edgePts[currSide].length - 2]; // Go through the sides and make the fans for (let side = 0; side < 3; side++) { if ( (side !== prevSide || prevNeeded) && (side !== nextSide || nextNeeded) ) { let m = 0; let n = edgePts[side].length - 1; if (side === currSide) { m += prevNeeded; n -= nextNeeded; } for (let k = m; k < n; k++) { polys.insertNextCell([ edgePts[side][k], edgePts[side][k + 1], tailPtIds[side], ]); } } } } } // --------------------------------------------------- /** * Triangulate a polygon that has been simplified by FindTrueEdges. * This will re-insert the original edges. The output triangles are * appended to "polys" and, for each stored triangle, "color" will * be added to "scalars". The final two arguments (polygon and * triangles) are only for temporary storage. * The return value is true if triangulation was successful. * * @param {Array} poly * @param {vtkPoints} points * @param {Array} polyEdges * @param {Array} originalEdges * @param {vtkCellArray} polys * @param {Vector3} normal * @returns {boolean} */ export function vtkCCSTriangulate( poly, points, polyEdges, originalEdges, polys, normal ) { let n = poly.length; // If the poly is a line, then skip it if (n < 3) { return true; } // If the poly is a triangle, then pass it if (n === 3) { const trids = [0, 1, 2]; vtkCCSInsertTriangle(polys, poly, trids, polyEdges, originalEdges); return true; } // If the poly has 4 or more points, triangulate it let triangulationFailure = false; let ppoint = []; let point = []; let npoint = []; let i = 0; let j = 0; let k = 0; const verts = []; verts.length = n; for (i = 0; i < n; i++) { verts[i] = [i, 0]; } // compute the triangle quality for each vert k = n - 2; points.getPoint(poly[verts[k][0]], point); i = n - 1; points.getPoint(poly[verts[i][0]], npoint); let concave = 0; let maxq = 0; let maxi = 0; for (j = 0; j < n; j++) { [ppoint, point, npoint] = [point, npoint, ppoint]; points.getPoint(poly[verts[j][0]], npoint); const q = vtkCCSTriangleQuality(ppoint, point, npoint, normal); if (q > maxq) { maxi = i; maxq = q; } concave += q < 0; verts[i][1] = q; i = j; } let foundEar; // perform the ear-cut triangulation for (;;) { // if no potential ears were found, then fail if (maxq <= Number.MIN_VALUE) { triangulationFailure = true; break; } i = maxi; j = i + 1 !== n ? i + 1 : 0; k = i !== 0 ? i - 1 : n - 1; if (verts[i][1] > 0) { foundEar = true; points.getPoint(poly[verts[j][0]], npoint); points.getPoint(poly[verts[k][0]], ppoint); // only do ear check if there are concave vertices if (concave) { // get the normal of the split plane const v = []; const u = []; vtkMath.subtract(npoint, ppoint, v); vtkMath.cross(v, normal, u); const d = vtkMath.dot(ppoint, u); let jj = j + 1 !== n ? j + 1 : 0; let x = []; points.getPoint(poly[verts[jj][0]], x); let side = vtkMath.dot(x, u) < d; let foundNegative = side; // check for crossings of the split plane jj = jj + 1 !== n ? jj + 1 : 0; let y = []; const s = []; const t = []; for (; foundEar && jj !== k; jj = jj + 1 !== n ? jj + 1 : 0) { [x, y] = [y, x]; points.getPoint(poly[verts[jj][0]], x); const sside = vtkMath.dot(x, u) < d; // XOR if (side ? !sside : sside) { side = !side; foundNegative = true; foundEar = vtkLine.intersection(ppoint, npoint, x, y, s, t) === vtkLine.IntersectionState.NO_INTERSECTION; } } foundEar &&= foundNegative; } if (!foundEar) { // don't try again until it is split verts[i][1] = Number.MIN_VALUE; } else { // create a triangle from vertex and neighbors const trids = [verts[i][0], verts[j][0], verts[k][0]]; vtkCCSInsertTriangle(polys, poly, trids, polyEdges, originalEdges); // remove the vertex i verts.splice(i, 1); k -= i === 0; j -= j !== 0; // break if this was final triangle if (--n < 3) { break; } // re-compute quality of previous point const kk = k !== 0 ? k - 1 : n - 1; points.getPoint(poly[verts[kk][0]], point); const kq = vtkCCSTriangleQuality(point, ppoint, npoint, normal); concave -= verts[k][1] < 0 && kq >= 0; verts[k][1] = kq; // re-compute quality of next point const jj = j + 1 !== n ? j + 1 : 0; points.getPoint(poly[verts[jj][0]], point); const jq = vtkCCSTriangleQuality(ppoint, npoint, point, normal); concave -= verts[j][1] < 0 && jq >= 0; verts[j][1] = jq; } } // find the highest-quality ear candidate maxi = 0; maxq = verts[0][1]; for (i = 1; i < n; i++) { const q = verts[i][1]; if (q > maxq) { maxi = i; maxq = q; } } } return !triangulationFailure; } // --------------------------------------------------- /** * Create polygons from line segments. * * @param {vtkPolyData} polyData * @param {Number} firstLine * @param {Number} endLine * @param {Boolean} oriented * @param {Array} newPolys * @param {Array} incompletePolys */ export function vtkCCSMakePolysFromLines( polyData, firstLine, endLine, oriented, newPolys, incompletePolys ) { let npts = 0; let pts = []; // Bitfield for marking lines as used const usedLines = new Uint8Array(endLine - firstLine); // defaults to 0 // Require cell links to get lines from pointIds polyData.buildLinks(polyData.getPoints().getNumberOfPoints()); let numNewPolys = 0; let remainingLines = endLine - firstLine; while (remainingLines > 0) { // Create a new poly const polyId = numNewPolys++; const poly = []; newPolys.push(poly); let lineId = 0; let completePoly = false; // start the poly for (lineId = firstLine; lineId < endLine; lineId++) { if (!usedLines[lineId - firstLine]) { pts = polyData.getCellPoints(lineId).cellPointIds; npts = pts.length; let n = npts; if (npts > 2 && pts[0] === pts[npts - 1]) { n = npts - 1; completePoly = true; } poly.length = n; for (let i = 0; i < n; i++) { poly[i] = pts[i]; } break; } } usedLines[lineId - firstLine] = 1; remainingLines--; let noLinesMatch = remainingLines === 0 && !completePoly; while (!completePoly && !noLinesMatch && remainingLines > 0) { // This is cleared if a match is found noLinesMatch = true; // Number of points in the poly const npoly = poly.length; const lineEndPts = []; const endPts = [poly[npoly - 1], poly[0]]; // For both open ends of the polygon for (let endIdx = 0; endIdx < 2; endIdx++) { const matches = []; const cells = polyData.getPointCells(endPts[endIdx]); // Go through all lines that contain this endpoint for (let icell = 0; icell < cells.length; icell++) { lineId = cells[icell]; if ( lineId >= firstLine && lineId < endLine && !usedLines[lineId - firstLine] ) { pts = polyData.getCellPoints(lineId).cellPointIds; npts = pts.length; lineEndPts[0] = pts[0]; lineEndPts[1] = pts[npts - 1]; // Check that poly end matches line end if ( endPts[endIdx] === lineEndPts[endIdx] || (!oriented && endPts[endIdx] === lineEndPts[1 - endIdx]) ) { matches.push(lineId); } } } if (matches.length > 0) { // Multiple matches mean we need to decide which path to take if (matches.length > 1) { // Remove double-backs let k = matches.length; do { lineId = matches[--k]; pts = polyData.getCellPoints(lineId).cellPointIds; npts = pts.length; lineEndPts[0] = pts[0]; lineEndPts[1] = pts[npts - 1]; // check if line is reversed const r = endPts[endIdx] !== lineEndPts[endIdx]; if ( (!r && ((endIdx === 0 && poly[npoly - 2] === pts[1]) || (endIdx === 1 && poly[1] === pts[npts - 2]))) || (r && ((endIdx === 0 && poly[npoly - 2] === pts[npts - 2]) || (endIdx === 1 && poly[1] === pts[1]))) ) { matches.splice(k, 1); } } while (k > 0 && matches.length > 1); // If there are multiple matches due to intersections, // they should be dealt with here. } lineId = matches[0]; pts = polyData.getCellPoints(lineId).cellPointIds; npts = pts.length; lineEndPts[0] = pts[0]; lineEndPts[1] = pts[npts - 1]; // Do both ends match? if (endPts[endIdx] === lineEndPts[endIdx]) { completePoly = endPts[1 - endIdx] === lineEndPts[1 - endIdx]; } else { completePoly = endPts[1 - endIdx] === lineEndPts[endIdx]; } if (endIdx === 0) { for (let i = 1; i < npts - (completePoly ? 1 : 0); i++) { poly.push(pts[i]); } } else { for (let i = completePoly ? 1 : 0; i < npts - 1; i++) { poly.unshift(pts[i]); } } if (endPts[endIdx] !== lineEndPts[endIdx]) { // reverse the ids in the added line let pit = poly.length; let ptsIt = completePoly ? 1 : 0; let ptsEnd = npts - 1; if (endIdx === 1) { pit = npts - 1 - (completePoly ? 1 : 0); ptsIt = 1; ptsEnd = npts - (completePoly ? 1 : 0); } while (ptsIt !== ptsEnd) { poly[--pit] = poly[ptsIt++]; } } usedLines[lineId - firstLine] = 1; remainingLines--; noLinesMatch = false; } } } // Check for incomplete polygons if (noLinesMatch) { incompletePolys.push(polyId); } } } // --------------------------------------------------- /** * Join polys that have loose ends, as indicated by incompletePolys. * Any polys created will have a normal opposite to the supplied normal, * and any new edges that are created will be on the hull of the point set. * Shorter edges will be preferred over long edges. * * @param {Array[]} polys * @param {Array} incompletePolys * @param {vtkPoints} points * @param {Vector3} normal */ export function vtkCCSJoinLooseEnds(polys, incompletePolys, points, normal) { // Relative tolerance for checking whether an edge is on the hull const tol = CCS_POLYGON_TOLERANCE; // A list of polys to remove when everything is done const removePolys = []; const p1 = []; const p2 = []; let poly1; let poly2; let pt1; let pt2; let dMin; let iMin; let v; let d; let n = incompletePolys.length; while (n !== 0) { poly1 = polys[incompletePolys[n - 1]]; pt1 = poly1[poly1.length - 1]; points.getPoint(pt1, p1); dMin = Number.MAX_VALUE; iMin = 0; for (let i = 0; i < n; i++) { poly2 = polys[incompletePolys[i]]; pt2 = poly2[0]; points.getPoint(pt2, p2); // The next few steps verify that edge [p1, p2] is on the hull v = [p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2]]; d = vtkMath.norm(v); if (d !== 0) { v[0] /= d; v[1] /= d; v[2] /= d; } // Compute the midpoint of the edge const pm = [ 0.5 * (p1[0] + p2[0]), 0.5 * (p1[1] + p2[1]), 0.5 * (p1[2] + p2[2]), ]; // Create a plane equation const pc = []; vtkMath.cross(normal, v, pc); pc[3] = -vtkMath.dot(pc, pm); // Check that all points are inside the plane. If they aren't, then // the edge is not on the hull of the pointset. let badPoint = false; const m = polys.length; const p = []; for (let j = 0; j < m && !badPoint; j++) { const poly = polys[j]; const npts = poly.length; for (let k = 0; k < npts; k++) { const ptId = poly[k]; if (ptId !== pt1 && ptId !== pt2) { points.getPoint(ptId, p); const val = p[0] * pc[0] + p[1] * pc[1] + p[2] * pc[2] + pc[3]; const r2 = vtkMath.distance2BetweenPoints(p, pm); // Check distance from plane against the tolerance if (val < 0 && val * val > tol * tol * r2) { badPoint = true; break; } } } // If no bad points, then this edge is a candidate if (!badPoint && d < dMin) { dMin = d; iMin = i; } } } // If a match was found, append the polys if (dMin < Number.MAX_VALUE) { // Did the poly match with itself? if (iMin === n - 1) { // Mark the poly as closed incompletePolys.pop(); } else { const id2 = incompletePolys[iMin]; // Combine the polys // for (let i = 1; i < polys[id2].length; i++) { // poly1.push(polys[id2][i]); // } poly1.push(...polys[id2]); // Erase the second poly removePolys.push(id2); incompletePolys.splice(iMin, 1); } } else { // If no match, erase this poly from consideration removePolys.push(incompletePolys[n - 1]); incompletePolys.pop(); } n = incompletePolys.length; } // Remove polys that couldn't be completed removePolys.sort((a, b) => a - b); let i = removePolys.length; while (i > 0) { // Remove items in reverse order polys.splice(removePolys[--i], 1); } // Clear the incompletePolys vector, it's indices are no longer valid incompletePolys.length = 0; } // --------------------------------------------------- /** * Given three vectors p.p1, p.p2, and p.p3, this routine * checks to see if progressing from p1 to p2 to p3 is a clockwise * or counterclockwise progression with respect to the normal. * The return value is -1 for clockwise, +1 for counterclockwise, * and 0 if any two of the vectors are coincident. * * @param {Vector3} p * @param {Vector3} p1 * @param {Vector3} p2 * @param {Vector3} p3 * @param {Vector3} normal * @returns {Number} */ export function vtkCCSVectorProgression(p, p1, p2, p3, normal) { const v1 = [p1[0] - p[0], p1[1] - p[1], p1[2] - p[2]]; const v2 = [p2[0] - p[0], p2[1] - p[1], p2[2] - p[2]]; const v3 = [p3[0] - p[0], p3[1] - p[1], p3[2] - p[2]]; const w1 = []; const w2 = []; vtkMath.cross(v2, v1, w1); vtkMath.cross(v2, v3, w2); const s1 = vtkMath.dot(w1, normal); const s2 = vtkMath.dot(w2, normal); if (s1 !== 0 && s2 !== 0) { const sb1 = s1 < 0; const sb2 = s2 < 0; // if sines have different signs // XOR if (sb1 ? !sb2 : sb2) { // return -1 if s2 is -ve return 1 - 2 * sb2; } const c1 = vtkMath.dot(v2, v1); const l1 = vtkMath.norm(v1); const c2 = vtkMath.dot(v2, v3); const l2 = vtkMath.norm(v3); // ck is the difference of the cosines, flipped in sign if sines are +ve const ck = (c2 * l2 - c1 * l1) * (1 - sb1 * 2); if (ck !== 0) { // return the sign of ck return 1 - 2 * (ck < 0); } } return 0; } // --------------------------------------------------- /** * Check for self-intersection. Split the figure-eights. * This assumes that all intersections occur at existing * vertices, i.e. no new vertices will be created. Returns * the number of splits made. * * @param {Array[]} polys * @param {vtkPoints} points * @param {Array} polyGroups * @param {Array} polyEdges * @param {Vector3} normal * @param {Boolean} oriented */ export function vtkCCSSplitAtPinchPoints( polys, points, polyGroups, polyEdges, normal, oriented ) { const tryPoints = vtkPoints.newInstance({ dataType: VtkDataTypes.DOUBLE, empty: true, }); const locator = vtkIncrementalOctreePointLocator.newInstance(); let splitCount = 0; let poly; let n; let bounds; let tol; for (let i = 0; i < polys.length; i++) { poly = polys[i]; n = poly.length; bounds = []; tol = CCS_POLYGON_TOLERANCE * Math.sqrt(vtkPolygon.getBounds(poly, points, bounds)); if (tol === 0) { // eslint-disable-next-line no-continue continue; } tryPoints.initialize(); locator.setTolerance(tol); locator.initPointInsertion(tryPoints, bounds); let foundMatch = false; let idx1 = 0; let idx2 = 0; let unique = 0; const point = []; const p1 = []; const p2 = []; const p3 = []; for (idx2 = 0; idx2 < n; idx2++) { points.getPoint(poly[idx2], point); const { success, pointIdx } = locator.insertUniquePoint(point, 0); if (!success) { // Need vertIdx to match poly indices, so force point insertion locator.insertNextPoint(point); // Do the points have different pointIds? idx1 = pointIdx; unique = poly[idx2] !== poly[idx1]; if (idx2 > idx1 + 2 - unique && n + idx1 > idx2 + 2 - unique) { if (oriented) { // Make sure that splitting this poly won't create a hole poly let prevIdx = n + idx1 - 1; let midIdx = idx1 + 1; let nextIdx = idx2 + 1; if (prevIdx >= n) { prevIdx -= n; } if (midIdx >= n) { midIdx -= n; } if (nextIdx >= n) { nextIdx -= n; } points.getPoint(poly[prevIdx], p1); points.getPoint(poly[midIdx], p2); points.getPoint(poly[nextIdx], p3); if (vtkCCSVectorProgression(point, p1, p2, p3, normal) > 0) { foundMatch = true; break; } } else { foundMatch = true; break; } } } } if (foundMatch) { splitCount++; // Split off a new poly const m = idx2 - idx1; const oldPoly = polys[i]; const oldEdges = polyEdges[i]; const newPoly1 = oldPoly.slice(idx1, idx1 + m + unique); const newEdges1 = oldEdges.slice(idx1, idx1 + m + unique); const newPoly2 = new Array(n - m + unique); const newEdges2 = new Array(n - m + unique); if (unique) { newEdges1[m] = -1; } // The poly that is split off, which might have more intersections for (let j = 0; j < idx1 + unique; j++) { newPoly2[j] = oldPoly[j]; newEdges2[j] = oldEdges[j]; } if (unique) { newEdges2[idx1] = -1; } for (let k = idx2; k < n; k++) { newPoly2[k - m + unique] = oldPoly[k]; newEdges2[k - m + unique] = oldEdges[k]; } polys[i] = newPoly1; polyEdges[i] = newEdges1; polys.push(newPoly2); polyEdges.push(newEdges2); // Unless polygroup was clear (because poly was reversed), // make a group with one entry for the new poly polyGroups.length = polys.length; if (polyGroups[i].length > 0) { polyGroups[polys.length - 1].push(polys.length - 1); } } } return splitCount; } // --------------------------------------------------- /** * The polygons might have a lot of extra points, i.e. points * in the middle of the edges. Remove those points, but keep * the original edges as polylines in the originalEdges array. * Only original edges with more than two points will be kept. * * @param {Array[]} polys * @param {vtkPoints} points * @param {Array} polyEdges * @param {Array} originalEdges */ export function vtkCCSFindTrueEdges(polys, points, polyEdges, originalEdges) { // Tolerance^2 for angle to see if line segments are parallel const atol2 = CCS_POLYGON_TOLERANCE * CCS_POLYGON_TOLERANCE; const p0 = []; const p1 = []; const p2 = []; const v1 = []; const v2 = []; let l1; let l2; for (let polyId = 0; polyId < polys.length; polyId++) { const oldPoly = polys[polyId]; const n = oldPoly.length; const newEdges = []; polyEdges.push(newEdges); // Only useful if poly has more than three sides if (n < 4) { newEdges[0] = -1; newEdges[1] = -1; newEdges[2] = -1; // eslint-disable-next-line no-continue continue; } // While we remove points, m keeps track of how many points are left let m = n; // Compute bounds for tolerance const bounds = []; const tol2 = vtkPolygon.getBounds(oldPoly, points, bounds) * atol2; // The new poly const newPoly = []; let cornerPointId = 0; let oldOriginalId = -1; // Keep the partial edge from before the first corner is found const partialEdge = []; let cellCount = 0; points.getPoint(oldPoly[n - 1], p0); points.getPoint(oldPoly[0], p1); vtkMath.subtract(p1, p0, v1); l1 = vtkMath.dot(v1, v1); for (let j = 0; j < n; j++) { let k = j + 1; if (k >= n) { k -= n; } points.getPoint(oldPoly[k], p2); vtkMath.subtract(p2, p1, v2); l2 = vtkMath.dot(v2, v2); // Dot product is |v1||v2|cos(theta) const c = vtkMath.dot(v1, v2); // sin^2(theta) = (1 - cos^2(theta)) // and c*c = l1*l2*cos^2(theta) const s2 = l1 * l2 - c * c; // In the small angle approximation, sin(theta) == theta, so // s2/(l1*l2) is the angle that we want to check, but it's not // a valid check if l1 or l2 is very close to zero. const pointId = oldPoly[j]; // Keep the point if: // 1) removing it would create a 2-point poly OR // 2) it's more than "tol" distance from the prev point AND // 3) the angle is greater than atol: if ( m <= 3 || (l1 > tol2 && (c < 0 || l1 < tol2 || l2 < tol2 || s2 > l1 * l2 * atol2)) ) { // Complete the previous edge only if the final point count // will be greater than two if (cellCount > 1) { if (pointId !== oldOriginalId) { originalEdges.push(pointId); cellCount++; } // Update the number of segments in the edge const countLocation = originalEdges.length - cellCount - 1; originalEdges[countLocation] = cellCount; newEdges.push(countLocation); } else if (cellCount === 0) { partialEdge.push(pointId); } else { newEdges.push(-1); } newPoly.push(pointId); // Start a new edge with cornerPointId as a "virtual" point cornerPointId = pointId; oldOriginalId = pointId; cellCount = 1; // Rotate to the next point p0[0] = p2[0]; p0[1] = p2[1]; p0[2] = p2[2]; p1[0] = p2[0]; p1[1] = p2[1]; p1[2] = p2[2]; v1[0] = v2[0]; v1[1] = v2[1]; v1[2] = v2[2]; l1 = l2; } else { if (cellCount > 0 && pointId !== oldOriginalId) { // First check to see if we have to add cornerPointId if (cellCount === 1) { originalEdges.push(1); // new edge originalEdges.push(cornerPointId); } // Then add the new point originalEdges.push(pointId); oldOriginalId = pointId; cellCount++; } else { // No corner yet, so save the point partialEdge.push(pointId); } // Reduce the count m--; // Join the previous two segments, since the point was removed p1[0] = p2[0]; p1[1] = p2[1]; p1[2] = p2[2]; vtkMath.subtract(p2, p0, v1); l1 = vtkMath.dot(v1, v1); } } // Add the partial edge to the end for (let ii = 0; ii < partialEdge.length; ii++) { const pointId = partialEdge[ii]; if (pointId !== oldOriginalId) { if (cellCount === 1) { originalEdges.push(1); // new edge originalEdges.push(cornerPointId); } originalEdges.push(pointId); oldOriginalId = pointId; cellCount++; } } // Finalize if (cellCount > 1) { // Update the number of segments in the edge const countLocation = originalEdges.length - cellCount - 1; originalEdges[countLocation] = cellCount; newEdges.push(countLocation); } polys[polyId] = newPoly; } } // --------------------------------------------------- /** * Reverse a cleaned-up polygon along with the info about * all of its original vertices. * * @param {Array} poly * @param {Array} edges * @param {Array} originalEdges */ export function vtkCCSReversePoly(poly, edges, originalEdges) { reverseElements(poly, 1, poly.length - 1); edges.reverse(); for (let i = 0; i < edges.length; i++) { if (edges[i] >= 0) { const firstPtsIdx = edges[i] + 1; const npts = originalEdges[edges[i]]; reverseElements(originalEdges, firstPtsIdx, firstPtsIdx + npts - 1); } } } // --------------------------------------------------- /** * Check the sense of the polygon against the given normal. Returns * zero if the normal is zero. * * @param {Array} poly * @param {vtkPoints} points * @param {Vector3} normal */ export function vtkCCSCheckPolygonSense(poly, points, normal) { // Compute the normal const pnormal = [0.0, 0.0, 0.0]; const p0 = []; const p1 = []; const p2 = []; const v1 = []; const v2 = []; const v = []; points.getPoint(poly[0], p0); points.getPoint(poly[1], p1); vtkMath.subtract(p1, p0, v1); for (let jj = 2; jj < poly.length; jj++) { points.getPoint(poly[jj], p2); vtkMath.subtract(p2, p0, v2); vtkMath.cross(v1, v2, v); vtkMath.add(pnormal, v, pnormal); p1[0] = p2[0]; p1[1] = p2[1]; p1[2] = p2[2]; v1[0] = v2[0]; v1[1] = v2[1]; v1[2] = v2[2]; } // Check the normal const d = vtkMath.dot(pnormal, normal); return { isNormalNotZero: d !== 0, sense: d > 0 }; } // --------------------------------------------------- /** * Check whether innerPoly is inside outerPoly. * The normal is needed to verify the polygon orientation. * The values of pp, bounds, and tol2 must be precomputed * by calling vtkCCSPrepareForPolyInPoly() on outerPoly. * * @param {Array} outerPoly * @param {Array} innerPoly * @param {vtkPoints} points * @param {Vector3} normal * @param {Float64Array} pp * @param {Bounds} bounds * @param {Number} tol2 */ export function vtkCCSPolyInPoly( outerPoly, innerPoly, points, normal, pp, bounds, tol2 ) { // Find a vertex of poly "j" that isn't on the edge of poly "i". // This is necessary or the PointInPolygon might return "true" // based only on roundoff error. const n = outerPoly.length; const m = innerPoly.length; const p = []; const q1 = []; const q2 = []; for (let jj = 0; jj < m; jj++) { // Semi-randomize the point order // eslint-disable-next-line no-bitwise const kk = (jj >> 1) + (jj & 1) * ((m + 1) >> 1); points.getPoint(innerPoly[kk], p); const intersectionState = vtkPolygon.pointInPolygon(p, pp, bounds, normal); if (intersectionState === PolygonWithPointIntersectionState.FAILURE) { vtkErrorMacro('Error finding point in polygon in vtkCCSPolyInPoly'); } if (intersectionState !== PolygonWithPointIntersectionState.OUTSIDE) { let pointOnEdge = 0; points.getPoint(outerPoly[n - 1], q1); for (let ii = 0; ii < n; ii++) { points.getPoint(outerPoly[ii], q2); // This method returns distance squared const { distance } = vtkLine.distanceToLine(p, q1, q2); if (distance < tol2) { pointOnEdge = 1; break; } q1[0] = q2[0]; q1[1] = q2[1]; q1[2] = q2[2]; } if (!pointOnEdge) { // Good result, point is in polygon return true; } } } // No matches found return false; } // --------------------------------------------------- /** * Precompute values needed for the PolyInPoly check. * The values that are returned are as follows: * pp: an array of the polygon vertices * bounds: the polygon bounds * tol2: a tolerance value based on the size of the polygon * (note: pp must be pre-allocated to the 3*outerPoly.length) * * @param {Array} outerPoly * @param {vtkPoints} points * @param {Float64Array} pp * @param {Bounds} bounds */ export function vtkCCSPrepareForPolyInPoly(outerPoly, points, pp, bounds) { const n = outerPoly.length; if (n === 0) { return 0.0; // to avoid false positive warning about uninitialized value } // Pull out the points const point = []; let j = 0; for (let i = 0; i < n; i++) { points.getPoint(outerPoly[i], point); pp[j++] = point[0]; pp[j++] = point[1]; pp[j++] = point[2]; } // Find the bounding box and tolerance for the polygon return ( vtkPolygon.getBounds(outerPoly, points, bounds) * (CCS_POLYGON_TOLERANCE * CCS_POLYGON_TOLERANCE) ); } // --------------------------------------------------- /** * Check for polygons within polygons. Group the polygons * if they are within each other. Reverse the sense of * the interior "hole" polygons. A hole within a hole * will be reversed twice and will become its own group. * * @param {Array} newPolys * @param {vtkPoints} points * @param {Array} polyGroups * @param {Array} polyEdges * @param {Array} originalEdges * @param {Vector3} normal * @param {Boolean} oriented */ export function vtkCCSMakeHoleyPolys( newPolys, points, polyGroups, polyEdges, originalEdges, normal, oriented ) { const numNewPolys = newPolys.length; if (numNewPolys <= 1) { return; } // Use bit arrays to keep track of inner polys const polyReversed = []; const innerPolys = []; // GroupCount is an array only needed for unoriented polys let groupCount; if (!oriented) { groupCount = new Int32Array(numNewPolys); } // Find the maximum poly size let nmax = 1; for (let kk = 0; kk < numNewPolys; kk++) { nmax = Math.max(nmax, newPolys[kk].length); } // These are some values needed for poly-in-poly checks const pp = new Float64Array(3 * nmax); const bounds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]; let tol2; // Go through all polys for (let i = 0; i < numNewPolys; i++) { const n = newPolys[i].length; if (n < 3) { // eslint-disable-next-line no-continue continue; } // Check if poly is reversed const { isNormalNotZero, sense } = vtkCCSCheckPolygonSense( newPolys[i], points, normal ); if (isNormalNotZero) { polyReversed[i] = !sense; } // Precompute some values needed for poly-in-poly checks tol2 = vtkCCSPrepareForPolyInPoly(newPolys[i], points, pp, bounds); // Look for polygons inside of this one for (let j = 0; j < numNewPolys; j++) { if (j !== i && newPolys[j].length >= 3) { // Make sure polygon i is not in polygon j const pg = polyGroups[j]; if (!pg.includes(i)) { if ( vtkCCSPolyInPoly( newPolys[i], newPolys[j], points, normal, pp.subarray(3 * n), bounds, tol2 ) ) { // Add to group polyGroups[i].push(j); if (groupCount) { groupCount[j] += 1; } } } } } } if (!oriented) { // build a stack of polys that aren't inside other polys= const outerPolyStack = []; for (let ll = 0; ll < numNewPolys; ll++) { if (groupCount[ll] === 0) { outerPolyStack.push(ll); } } let j; while (outerPolyStack.length > 0) { j = outerPolyStack.length - 1; outerPolyStack.pop(); if (polyReversed[j]) { vtkCCSReversePoly(newPolys[j], polyEdges[j], originalEdges); polyReversed[j] = false; } if (polyGroups[j].length > 1) { // Convert the group into a bit array, to make manipulation easier innerPolys.length = 0; for (let k = 1; k < polyGroups[j].length; k++) { const jj = polyGroups[j][k]; if (groupCount[jj] > 1) { groupCount[jj] -= 2; if (groupCount[jj] === 0) { outerPolyStack.push(jj); } } else { innerPolys[jj] = 1; polyGroups[jj].length = 0; if (!polyReversed[jj]) { vtkCCSReversePoly(newPolys[jj], polyEdges[jj], originalEdges); polyReversed[jj] = false; } } } // Use the bit array to recreate the polyGroup polyGroups[j].length = 0; polyGroups[j].push(j); for (let jj = 0; jj < numNewPolys; jj++) { if (innerPolys[jj]) { polyGroups[j].push(jj); } } } } } else { // oriented for (let j = 0; j < numNewPolys; j++) { // Remove the groups for reversed polys if (polyReversed[j]) { polyGroups[j].length = 0; } // Polys inside the interior polys have their own groups, so remove // them from this group else if (polyGroups[j].length > 1) { // Convert the group into a bit array, to make manipulation easier innerPolys.length = 0; for (let k = 1; k < polyGroups[j].length; k++) { innerPolys[polyGroups[j][k]] = true; } // Look for non-reversed polys inside this one for (let kk = 1; kk < polyGroups[j].length; kk++) { // jj is the index of the inner poly const jj = polyGroups[j][kk]; // If inner poly is not reversed then if (!polyReversed[jj]) { // Remove that poly and all polys inside of it from the group for (let ii = 0; ii < polyGroups[jj].length; ii++) { innerPolys[polyGroups[jj][ii]] = false; } } } // Use the bit array to recreate the polyGroup polyGroups[j].length = 0; polyGroups[j].push(j); for (let jj = 0; jj < numNewPolys; jj++) { if (innerPolys[jj]) { polyGroups[j].push(jj); } } } } } // delete[] groupCount; } // --------------------------------------------------- /** * Check line segment with point Ids (i, j) to make sure that it * doesn't cut through the edges of any polys in the group. * Return value of zero means check failed and the cut is not * usable. * * @param {Array[]} polys * @param {vtkPoints} points * @param {Vector3} normal * @param {Array} polyGroup * @param {Number} outerPolyId * @param {Number} innerPolyId * @param {Number} outerIdx * @param {Number} innerIdx */ export function vtkCCSCheckCut( polys, points, normal, polyGroup, outerPolyId, innerPolyId, outerIdx, innerIdx ) { const ptId1 = polys[outerPolyId][outerIdx]; const ptId2 = polys[innerPolyId][innerIdx]; const tol = CCS_POLYGON_TOLERANCE; const p1 = []; const p2 = []; points.getPoint(ptId1, p1); points.getPoint(ptId2, p2); const w = []; vtkMath.subtract(p2, p1, w); const l = vtkMath.normalize(w); // Cuts between coincident points are good if (l === 0) { return true; } // Define a tolerance with units of distance squared const tol2 = l * l * tol * tol; // Check the sense of the cut: it must be pointing "in" for both polys. let polyId = outerPolyId; let polyIdx = outerIdx; let r = p1; const r1 = []; let r2 = p2; const r3 = []; for (let ii = 0; ii < 2; ii++) { const poly = polys[polyId]; const n = poly.length; let prevIdx = n - polyIdx - 1; let nextIdx = polyIdx + 1; if (prevIdx >= n) { prevIdx -= n; } if (nextIdx >= n) { nextIdx -= n; } points.getPoint(poly[prevIdx], r1); points.getPoint(poly[nextIdx], r3); if (vtkCCSVectorProgression(r, r1, r2, r3, normal) > 0) { return false; } polyId = innerPolyId; polyIdx = innerIdx; r = p2; r2 = p1; } // Check for intersections of the cut with polygon edges. // First, create a cut plane that divides space at the cut line. const pc = []; vtkMath.cross(normal, w, pc); pc[3] = -vtkMath.dot(pc, p1); for (let i = 0; i < polyGroup.length; i++) { const poly = polys[polyGroup[i]]; const n = poly.length; const q1 = []; const q2 = []; let qtId1 = poly[n - 1]; points.getPoint(qtId1, q1); let v1 = pc[0] * q1[0] + pc[1] * q1[1] + pc[2] * q1[2] + pc[3]; let c1 = v1 > 0; for (let j = 0; j < n; j++) { const qtId2 = poly[j]; points.getPoint(qtId2, q2); const v2 = pc[0] * q2[0] + pc[1] * q2[1] + pc[2] * q2[2] + pc[3]; const c2 = v2 > 0; // If lines share an endpoint, they can't intersect, // so don't bother with the check. if ( ptId1 !== qtId1 && ptId1 !== qtId2 && ptId2 !== qtId1 && ptId2 !== qtId2 ) { // Check for intersection if ((c1 ? !c2 : c2) || v1 * v1 < tol2 || v2 * v2 < tol2) { vtkMath.subtract(q2, q1, w); if (vtkMath.dot(w, w) > 0) { const qc = []; vtkMath.cross(w, normal, qc); qc[3] = -vtkMath.dot(qc, q1); const u1 = qc[0] * p1[0] + qc[1] * p1[1] + qc[2] * p1[2] + qc[3]; const u2 = qc[0] * p2[0] + qc[1] * p2[1] + qc[2] * p2[2] + qc[3]; const d1 = u1 > 0; const d2 = u2 > 0; if (d1 ? !d2 : d2) { // One final check to make sure endpoints aren't coincident let p = p1; let q = q1; if (v2 * v2 < v1 * v1) { p = p2; } if (u2 * u2 < u1 * u1) { q = q2; } if (vtkMath.distance2BetweenPoints(p, q) > tol2) { return false; } } } } } qtId1 = qtId2; q1[0] = q2[0]; q1[1] = q2[1]; q1[2] = q2[2]; v1 = v2; c1 = c2; } } return true; } // --------------------------------------------------- /** * Check the quality of a cut between an outer and inner polygon. * An ideal cut is one that forms a 90 degree angle with each * line segment that it joins to. Smaller values indicate a * higher quality cut. * * @param {Array} outerPoly * @param {Array} innerPoly * @param {Number} i * @param {Number} j * @param {vtkPoints} points */ export function vtkCCSCutQuality(outerPoly, innerPoly, i, j, points) { const n = outerPoly.length; const m = innerPoly.length; const a = i > 0 ? i - 1 : n - 1; const b = i < n - 1 ? i + 1 : 0; const c = j > 0 ? j - 1 : m - 1; const d = j < m - 1 ? j + 1 : 0; const p0 = []; const p1 = []; const p2 = []; points.getPoint(outerPoly[i], p1); points.getPoint(innerPoly[j], p2); const v1 = []; const v2 = []; vtkMath.subtract(p2, p1, v1); const l1 = vtkMath.dot(v1, v1); let l2; let qmax = 0; let q; points.getPoint(outerPoly[a], p0); vtkMath.subtract(p0, p1, v2); l2 = vtkMath.dot(v2, v2); if (l2 > 0) { q = vtkMath.dot(v1, v2); q *= q / l2; if (q > qmax) { qmax = q; } } points.getPoint(outerPoly[b], p0); vtkMath.subtract(p0, p1, v2); l2 = vtkMath.dot(v2, v2); if (l2 > 0) { q = vtkMath.dot(v1, v2); q *= q / l2; if (q > qmax) { qmax = q; } } points.getPoint(innerPoly[c], p0); vtkMath.subtract(p2, p0, v2); l2 = vtkMath.dot(v2, v2); if (l2 > 0) { q = vtkMath.dot(v1, v2); q *= q / l2; if (q > qmax) { qmax = q; } } points.getPoint(innerPoly[d], p0); vtkMath.subtract(p2, p0, v2); l2 = vtkMath.dot(v2, v2); if (l2 > 0) { q = vtkMath.dot(v1, v2); q *= q / l2; if (q > qmax) { qmax = q; } } if (l1 > 0) { return qmax / l1; // also l1 + qmax, incorporates distance; } return Number.MAX_VALUE; } // --------------------------------------------------- /** * Find the two sharpest verts on an inner (i.e. inside-out) poly. * * @param {Array} poly * @param {vtkPoints} points * @param {Vector3} normal * @param {[Number, Number]} verts */ export function vtkCCSFindSharpestVerts(poly, points, normal, verts) { const p1 = []; const p2 = []; const v1 = []; const v2 = []; const v = []; let l1; let l2; const minVal = [0, 0]; verts[0] = 0; verts[1] = 0; const n = poly.length; points.getPoint(poly[n - 1], p2); points.getPoint(poly[0], p1); vtkMath.subtract(p1, p2, v1); l1 = Math.sqrt(vtkMath.dot(v1, v1)); for (let j = 0; j < n; j++) { let k = j + 1; if (k === n) { k = 0; } points.getPoint(poly[k], p2); vtkMath.subtract(p2, p1, v2); l2 = Math.sqrt(vtkMath.dot(v2, v2)); vtkMath.cross(v1, v2, v); const b = vtkMath.dot(v, normal); if (b < 0 && l1 * l2 > 0) { // Dot product is |v1||v2|cos(theta), range [-1, +1] const val = vtkMath.dot(v1, v2) / (l1 * l2); if (val < minVal[0]) { minVal[1] = minVal[0]; minVal[0] = val; verts[1] = verts[0]; verts[0] = j; } } // Rotate to the next point p1[0] = p2[0]; p1[1] = p2[1]; p1[2] = p2[2]; v1[0] = v2[0]; v1[1] = v2[1]; v1[2] = v2[2]; l1 = l2; } } // --------------------------------------------------- /** * Find two valid cuts between outerPoly and innerPoly. * Used by vtkCCSCutHoleyPolys. * * @param {Array} polys * @param {Array} polyGroup * @param {Number} outerPolyId * @param {Number} innerPolyId * @param {vtkPoints} points * @param {Vector3} normal * @param {Array[]} cuts * @param {Boolean} exhaustive */ export function vtkCCSFindCuts( polys, polyGroup, outerPolyId, innerPolyId, points, normal, cuts, exhaustive ) { const outerPoly = polys[outerPolyId]; const innerPoly = polys[innerPolyId]; const innerSize = innerPoly.length; // Find the two sharpest points on the inner poly const verts = []; vtkCCSFindSharpestVerts(innerPoly, points, normal, verts); // A list of cut locations according to quality const cutlist = []; cutlist.length = outerPoly.length; // Search for potential cuts (need to find two cuts) let cutId = 0; cuts[0][0] = 0; cuts[0][1] = 0; cuts[1][0] = 0; cuts[1][1] = 0; let foundCut = false; for (cutId = 0; cutId < 2; cutId++) { const count = exhaustive ? innerSize : 3; for (let i = 0; i < count && !foundCut; i++) { // Semi-randomize the search order // TODO: Does this do the same as in C++? // eslint-disable-next-line no-bitwise let j = (i >> 1) + (i & 1) * ((innerSize + 1) >> 1); // Start at the best first point j = (j + verts[cutId]) % innerSize; for (let kk = 0; kk < outerPoly.length; kk++) { const q = vtkCCSCutQuality(outerPoly, innerPoly, kk, j, points); cutlist[kk] = [q, kk]; } cutlist.sort((a, b) => a[0] - b[0]); for (let lid = 0; lid < cutlist.length; lid++) { const k = cutlist[lid][1]; // If this is the second cut, do extra checks if (cutId > 0) { // Make sure cuts don't share an endpoint if (j === cuts[0][1] || k === cuts[0][0]) { // eslint-disable-next-line no-continue continue; } // Make sure cuts don't intersect const p1 = []; const p2 = []; points.getPoint(outerPoly[cuts[0][0]], p1); points.getPoint(innerPoly[cuts[0][1]], p2); const q1 = []; const q2 = []; points.getPoint(outerPoly[k], q1); points.getPoint(innerPoly[j], q2); let u; let v; if ( vtkLine.intersection(p1, p2, q1, q2, u, v) === vtkLine.IntersectionState.YES_INTERSECTION ) { // eslint-disable-next-line no-continue continue; } } // This check is done for both cuts if ( vtkCCSCheckCut( polys, points, normal, polyGroup, outerPolyId, innerPolyId, k, j ) ) { cuts[cutId][0] = k; cuts[cutId][1] = j; foundCut = true; break; } } } if (!foundCut) { return false; } } return true; } // --------------------------------------------------- /** * Helper for vtkCCSCutHoleyPolys. Change a polygon and a hole * into two separate polygons by making two cuts between them. * * @param {Array[]} polys * @param {Array} polyEdges * @param {Number} outerPolyId * @param {Number} innerPolyId * @param {vtkPoints} points * @param {Array[]} cuts */ export function vtkCCSMakeCuts( polys, polyEdges, outerPolyId, innerPolyId, points, cuts ) { const q = []; const r = []; for (let bb = 0; bb < 2; bb++) { const ptId1 = polys[outerPolyId][cuts[bb][0]]; const ptId2 = polys[innerPolyId][cuts[bb][1]]; points.getPoint(ptId1, q); points.getPoint(ptId2, r); } const outerPoly = polys[outerPolyId]; const innerPoly = polys[innerPolyId]; const outerEdges = polyEdges[outerPolyId]; const innerEdges = polyEdges[innerPolyId]; // Generate new polys from the cuts const n = outerPoly.length; const m = innerPoly.length; let idx; // Generate poly1 const n1 = n * (cuts[1][0] < cuts[0][0]) + cuts[1][0] - cuts[0][0] + 1; const n2 = n1 + m * (cuts[0][1] < cuts[1][1]) + cuts[0][1] - cuts[1][1] + 1; const poly1 = []; poly1.length = n2; const edges1 = new Array(n2); idx = cuts[0][0]; for (let i1 = 0; i1 < n1; i1++) { const k = idx++; poly1[i1] = outerPoly[k]; edges1[i1] = outerEdges[k]; idx *= idx !== n; } edges1[n1 - 1] = -1; idx = cuts[1][1]; for (let i2 = n1; i2 < n2; i2++) { const k = idx++; poly1[i2] = innerPoly[k]; edges1[i2] = innerEdges[k]; idx *= idx !== m; } edges1[n2 - 1] = -1; // Generate poly2 const m1 = n * (cuts[0][0] < cuts[1][0]) + cuts[0][0] - cuts[1][0] + 1; const m2 = m1 + m * (cuts[1][1] < cuts[0][1]) + cuts[1][1] - cuts[0][1] + 1; const poly2 = []; poly2.length = m2; const edges2 = new Array(m2); idx = cuts[1][0]; for (let j1 = 0; j1 < m1; j1++) { const k = idx++; poly2[j1] = outerPoly[k]; edges2[j1] = outerEdges[k]; idx *= idx !== n; } edges2[m1 - 1] = -1; idx = cuts[0][1]; for (let j2 = m1; j2 < m2; j2++) { const k = idx++; poly2[j2] = innerPoly[k]; edges2[j2] = innerEdges[k]; idx *= idx !== m; } edges2[m2 - 1] = -1; // Replace outerPoly and innerPoly with these new polys polys[outerPolyId] = poly1; polys[innerPolyId] = poly2; polyEdges[outerPolyId] = edges1; polyEdges[innerPolyId] = edges2; } // --------------------------------------------------- /** * After the holes have been identified, make cuts between the * outer poly and each hole. Make two cuts per hole. The only * strict requirement is that the cut must not intersect any * edges, but it's best to make sure that no really sharp angles * are created. * * @param {Array[]} polys * @param {vtkPoints} points * @param {Array[]} polyGroups * @param {Array} polyEdges * @param {Vector3} normal * @returns {boolean} */ export function vtkCCSCutHoleyPolys( polys, points, polyGroups, polyEdges, normal ) { let cutFailure = 0; // Go through all groups and cut out the first inner poly that is // found. Every time an inner poly is cut out, the groupId counter // is reset because cutting a poly creates a new group. let groupId = 0; while (groupId < polyGroups.length) { const polyGroup = polyGroups[groupId]; // Only need to make a cut if the group size is greater than 1 if (polyGroup.length > 1) { // The first member of the group is the outer poly const outerPolyId = polyGroup[0]; // The second member of the group is the first inner poly let innerPolyId = polyGroup[1]; // Sort the group by size, do largest holes first let innerBySize = new Array(polyGroup.length); for (let i = 1; i < polyGroup.length; i++) { innerBySize[i] = [polys[polyGroup[i]].length, i]; } innerBySize = [ innerBySize[0], ...innerBySize.splice(1).sort((a, b) => a[0] - b[0]), ]; reverseElements(innerBySize, 1, innerBySize.length - 1); // Need to check all inner polys in sequence, until one succeeds. // Do a quick search first, then do an exhaustive search. let madeCut = 0; let inner = 0; for (let exhaustive = 0; exhaustive < 2 && !madeCut; exhaustive++) { for (let j = 1; j < polyGroup.length; j++) { inner = innerBySize[j][1]; innerPolyId = polyGroup[inner]; const cuts = []; if ( vtkCCSFindCuts( polys, polyGroup, outerPolyId, innerPolyId, points, normal, cuts, exhaustive ) ) { vtkCCSMakeCuts( polys, polyEdges, outerPolyId, innerPolyId, points, cuts ); madeCut = 1; break; } } } if (madeCut) { // Move successfully cut innerPolyId into its own group polyGroup.splice(inner, 1); // Only add if innerPolyId hasn't been set already. // Having the same poly occur as both polyGroup and // innerPoly would cause an infinite loop. if (polyGroups[innerPolyId].length === 0) { polyGroups[innerPolyId].push(innerPolyId); } } else { // Remove all failed inner polys from the group for (let k = 1; k < polyGroup.length; k++) { innerPolyId = polyGroup[k]; // Only add if innerPolyId hasn't been set already. // Having the same poly occur as both polyGroup and // innerPoly would cause an infinite loop. if (polyGroups[innerPolyId].length === 0) { polyGroups[innerPolyId].push(innerPolyId); } } polyGroup.length = 1; cutFailure = 1; } // If there are other interior polys in the group, find out whether // they are in poly1 or poly2 if (polyGroup.length > 1) { const poly1 = polys[outerPolyId]; const pp = new Float64Array(3 * poly1.length); const bounds = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]; const tol2 = vtkCCSPrepareForPolyInPoly(poly1, points, pp, bounds); let nextGroupId = groupId; let ii = 1; while (ii < polyGroup.length) { if ( vtkCCSPolyInPoly( poly1, polys[polyGroup[ii]], points, normal, pp, bounds, tol2 ) ) { // Keep this poly in polyGroup ii++; } else { // Move this poly to poly2 group polyGroups[innerPolyId].push(polyGroup[ii]); polyGroup.splice(ii, 1); // Reduce the groupId to ensure that this new group will get cut if (innerPolyId < nextGroupId) { nextGroupId = innerPolyId; } } } // Set the groupId for the next iteration groupId = nextGroupId; // eslint-disable-next-line no-continue continue; } } // Increment to the next group groupId++; } return !cutFailure; } |