All files / Sources/Filters/General/MoleculeToRepresentation index.js

96.57% Statements 169/175
74.6% Branches 47/63
100% Functions 5/5
96.42% Lines 162/168

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453              1x           1x 1x 119x               4x 4x 4x 4x     4x                 100x 100x   100x 100x 100x   100x 100x 100x   100x 300x       4x   3x   3x           3x 3x     3x 3x 3x 3x 3x 3x     3x 3x 3x 3x   3x 3x 2x 2x 2x     3x 2x 2x       3x 3x 1x 1x 1x     3x 1x       3x 3x 3x   3x 3x 3x   3x       3x 3x   32x 32x 32x 32x 32x 32x         32x         32x 32x 32x 32x     32x 32x       32x 32x 32x 32x 32x           3x 2x 2x     2x 24x 276x 276x 276x 276x         276x 276x 276x   276x         242x       34x   34x 34x   25x 25x 25x       2x       3x   32x 32x     32x             32x 32x 32x         32x 32x 32x 32x   32x     32x       32x 32x 5x   5x                           32x 32x   53x   53x         53x   53x 53x     53x         53x 53x 53x 53x     53x                 53x         47x   47x                       47x             47x                     47x             6x   6x                 6x 6x                         3x   3x 3x         3x     3x 2x         2x     3x   3x         3x   3x         3x   3x 2x         2x       3x 3x   3x               1x                         4x     4x 4x                 4x 4x         1x                
import macro from 'vtk.js/Sources/macros';
import vtkPolyData from 'vtk.js/Sources/Common/DataModel/PolyData';
import vtkDataArray from 'vtk.js/Sources/Common/Core/DataArray';
import * as vtkMath from 'vtk.js/Sources/Common/Core/Math';
 
import atomElem from 'vtk.js/Utilities/XMLConverter/chemistry/elements.json';
 
const { vtkErrorMacro, vtkDebugMacro } = macro;
 
// ----------------------------------------------------------------------------
// Globals
// ----------------------------------------------------------------------------
 
const ATOMS = {};
atomElem.atoms.forEach((a) => {
  ATOMS[a.atomicNumber] = a;
});
 
// ----------------------------------------------------------------------------
// vtkMoleculeToRepresentation methods
// ----------------------------------------------------------------------------
 
function vtkMoleculeToRepresentation(publicAPI, model) {
  const bondPositionData = [];
  const bondScaleData = [];
  const bondOrientationData = [];
  const bondColorData = [];
 
  // Set our className
  model.classHierarchy.push('vtkMoleculeToRepresentation');
 
  function addBond(
    position,
    orientation,
    length,
    color = [1.0, 1.0, 1.0],
    radius = model.bondRadius
  ) {
    bondScaleData.push(length);
    bondScaleData.push(radius);
 
    bondOrientationData.push(orientation[0]);
    bondOrientationData.push(orientation[1]);
    bondOrientationData.push(orientation[2]);
 
    bondPositionData.push(position[0]);
    bondPositionData.push(position[1]);
    bondPositionData.push(position[2]);
 
    for (let i = 0; i < color.length; ++i) {
      bondColorData.push(color[i] * 255);
    }
  }
 
  publicAPI.requestData = (inData, outData) => {
    // input
    const moleculedata = inData[0];
 
    Iif (!moleculedata) {
      vtkErrorMacro('Invalid or missing input');
      return 1;
    }
 
    // output
    const SphereData = vtkPolyData.newInstance();
    const StickData = vtkPolyData.newInstance();
 
    // Fetch from input molecule data
    let numPts = 0;
    let numBonds = 0;
    let pointsArray = null;
    let atomicNumber = null;
    let bondIndex = null;
    let bondOrder = null;
 
    // Empty arrays
    bondPositionData.length = 0;
    bondScaleData.length = 0;
    bondOrientationData.length = 0;
    bondColorData.length = 0;
 
    if (moleculedata.getAtoms()) {
      if (moleculedata.getAtoms().coords !== undefined) {
        if (moleculedata.getAtoms().coords['3d'] !== undefined) {
          pointsArray = moleculedata.getAtoms().coords['3d'];
          numPts = pointsArray.length / 3;
        }
      }
      if (moleculedata.getAtoms().elements !== undefined) {
        if (moleculedata.getAtoms().elements.number !== undefined) {
          atomicNumber = moleculedata.getAtoms().elements.number;
        }
      }
    }
    if (moleculedata.getBonds()) {
      if (moleculedata.getBonds().connections !== undefined) {
        if (moleculedata.getBonds().connections.index !== undefined) {
          bondIndex = moleculedata.getBonds().connections.index;
          numBonds = bondIndex.length / 2;
        }
      }
      if (moleculedata.getBonds().order !== undefined) {
        bondOrder = moleculedata.getBonds().order;
      }
    }
 
    const pointsData = [];
    const scaleData = [];
    const colorData = [];
 
    const radiusArray = [];
    const covalentArray = [];
    const colorArray = [];
 
    vtkDebugMacro('Checking for bonds with tolerance ', model.tolerance);
 
    // go through each points and fill from elements.json
    /* eslint-disable no-continue */
    let ptsIdx = 0;
    for (let i = 0; i < numPts; i++) {
      // fetch from elements.json
      if (atomicNumber) {
        radiusArray.push(ATOMS[atomicNumber[i]][model.radiusType]);
        covalentArray.push(ATOMS[atomicNumber[i]].radiusCovalent);
        colorArray.push(ATOMS[atomicNumber[i]].elementColor[0]);
        colorArray.push(ATOMS[atomicNumber[i]].elementColor[1]);
        colorArray.push(ATOMS[atomicNumber[i]].elementColor[2]);
      }
 
      // skip atoms specified by hideElements
      // model.hideHydrogen = false; // show hydrogen
      Iif (model.hideElements.indexOf(ATOMS[atomicNumber[i]].id) !== -1) {
        continue;
      }
 
      // points
      ptsIdx = i * 3;
      pointsData.push(pointsArray[ptsIdx]);
      pointsData.push(pointsArray[ptsIdx + 1]);
      pointsData.push(pointsArray[ptsIdx + 2]);
 
      // radius
      if (radiusArray.length > 0) {
        scaleData.push(radiusArray[i] * model.atomicRadiusScaleFactor);
      }
 
      // colors
      if (colorArray.length > 0) {
        ptsIdx = i * 3;
        colorData.push(colorArray[ptsIdx] * 255);
        colorData.push(colorArray[ptsIdx + 1] * 255);
        colorData.push(colorArray[ptsIdx + 2] * 255);
      }
    }
 
    // if we don't have Bonds provided
    // we fill up a bondIndex and a bondOrder
    if (!bondIndex) {
      bondIndex = [];
      bondOrder = [];
      // default bond display
      /* eslint-disable no-continue */
      for (let i = 0; i < numPts; i++) {
        for (let j = i + 1; j < numPts; j++) {
          const cutoff = covalentArray[i] + covalentArray[j] + model.tolerance;
          const jPtsIdx = j * 3;
          const iPtsIdx = i * 3;
          const diff = [
            pointsArray[jPtsIdx],
            pointsArray[jPtsIdx + 1],
            pointsArray[jPtsIdx + 2],
          ];
          diff[0] -= pointsArray[iPtsIdx];
          diff[1] -= pointsArray[iPtsIdx + 1];
          diff[2] -= pointsArray[iPtsIdx + 2];
 
          if (
            Math.abs(diff[0]) > cutoff ||
            Math.abs(diff[1]) > cutoff ||
            Math.abs(diff[2]) > cutoff
          ) {
            continue;
          }
 
          // Check radius and add bond if needed
          const cutoffSq = cutoff * cutoff;
          const diffsq =
            diff[0] * diff[0] + diff[1] * diff[1] + diff[2] * diff[2];
          if (diffsq < cutoffSq && diffsq > 0.1) {
            // appendBond between i and j
            bondIndex.push(i);
            bondIndex.push(j);
            bondOrder.push(1);
          }
        }
      }
      numBonds = bondIndex.length / 2;
    }
 
    // now we have the bonds, draw them
    for (let index = 0; index < numBonds; index++) {
      // appendBond between i and j
      const i = bondIndex[index * 2];
      const j = bondIndex[index * 2 + 1];
 
      // Do not append if i or j belong to element to not display
      Iif (
        model.hideElements.indexOf(ATOMS[atomicNumber[i]].id) !== -1 ||
        model.hideElements.indexOf(ATOMS[atomicNumber[j]].id) !== -1
      ) {
        continue;
      }
 
      const jPtsIdx = j * 3;
      const iPtsIdx = i * 3;
      const diff = [
        pointsArray[jPtsIdx],
        pointsArray[jPtsIdx + 1],
        pointsArray[jPtsIdx + 2],
      ];
      diff[0] -= pointsArray[iPtsIdx];
      diff[1] -= pointsArray[iPtsIdx + 1];
      diff[2] -= pointsArray[iPtsIdx + 2];
      const diffsq = diff[0] * diff[0] + diff[1] * diff[1] + diff[2] * diff[2];
 
      let bondDelta = (2 + model.deltaBondFactor) * model.bondRadius; // distance between 2 bonds
 
      // scale bonds if total distance from bonds is bigger than 2r*factor with r = min(r_i, r_j)
      const r = Math.min(
        radiusArray[i] * model.atomicRadiusScaleFactor,
        radiusArray[j] * model.atomicRadiusScaleFactor
      );
      const t = (bondOrder[index] - 1) * bondDelta + 2 * model.bondRadius;
      if (t > 2 * r * 0.6) {
        model.bondRadius *= (2 * r * 0.6) / t;
        // recompute bondDelta
        bondDelta = (2 + model.deltaBondFactor) * model.bondRadius; // distance between 2 bonds
      }
 
      // Display multiple bond
      // loop such as 0 11 22 if odd order / 00 11 22 33 if even order
      // To make:     0 22 44 66 88 ...      11 33 55 77 ....
      // because the offset has to be:
      // (with bd= bondDelta. Note the minus is added just before creating bondPos)
      //   - odd order: 0 2bd/2 -2bd/2 4bd/2 -4bd/2 ...
      //   - even order:  1bd/2 -1bd/2 3bd/2 -3bd/2 ...
      // Then, to transform loop to offset we have:
      //   - odd order: x * 2 <=> x * 2 + 1 - 1
      //   - even order: x * 2 + 1
      // (with x the loop <=> floor(k/2))
      const oddOrEven = bondOrder[index] % 2; // zero if even order / one if odd order
      for (let k = oddOrEven; k < bondOrder[index] + oddOrEven; k++) {
        // dist from center to bond depending of number of bond
        let offset = ((Math.floor(k / 2) * 2 + 1 - oddOrEven) * bondDelta) / 2;
 
        const vectUnitJI = [
          diff[0] / Math.sqrt(diffsq),
          diff[1] / Math.sqrt(diffsq),
          diff[2] / Math.sqrt(diffsq),
        ];
        const vectUnitJIperp = [0, 0, 0];
        // Search perp to vectUnitJI: find axis != 0 to create vectUnitJIperp such as dot(vectUnitJIperp,vectUnitJI) = 0
        for (let coord = 0; coord < 3; coord++) {
          Iif (Math.abs(vectUnitJI[coord]) < 0.000001) {
            continue;
          }
          vectUnitJIperp[coord] =
            -(
              vectUnitJI[(coord + 2) % 3] * vectUnitJI[(coord + 2) % 3] +
              vectUnitJI[(coord + 1) % 3] * vectUnitJI[(coord + 1) % 3]
            ) / vectUnitJI[coord];
          vectUnitJIperp[(coord + 1) % 3] = vectUnitJI[(coord + 1) % 3];
          vectUnitJIperp[(coord + 2) % 3] = vectUnitJI[(coord + 2) % 3];
          vtkMath.normalize(vectUnitJIperp);
          break;
        }
 
        offset *= (-1) ** (k % 2);
        /*
        If atoms have a color associated, and if the atoms involved in the bond
        are different species, then each bond will be represented by
        two sticks, so that they can be colored with the same color as the atoms
        involved in the bond.
        */
        let bondPos;
 
        if (
          atomicNumber &&
          atomicNumber[i] !== atomicNumber[j] &&
          colorArray.length > 0
        ) {
          const bondLength = Math.sqrt(diffsq) / 2.0;
 
          bondPos = [
            pointsArray[jPtsIdx] -
              (bondLength * vectUnitJI[0]) / 2.0 +
              offset * vectUnitJIperp[0],
            pointsArray[jPtsIdx + 1] -
              (bondLength * vectUnitJI[1]) / 2.0 +
              offset * vectUnitJIperp[1],
            pointsArray[jPtsIdx + 2] -
              (bondLength * vectUnitJI[2]) / 2.0 +
              offset * vectUnitJIperp[2],
          ];
 
          addBond(
            bondPos,
            vectUnitJI,
            bondLength,
            colorArray.slice(jPtsIdx, jPtsIdx + 3)
          );
 
          bondPos = [
            pointsArray[iPtsIdx] +
              (bondLength * vectUnitJI[0]) / 2.0 +
              offset * vectUnitJIperp[0],
            pointsArray[iPtsIdx + 1] +
              (bondLength * vectUnitJI[1]) / 2.0 +
              offset * vectUnitJIperp[1],
            pointsArray[iPtsIdx + 2] +
              (bondLength * vectUnitJI[2]) / 2.0 +
              offset * vectUnitJIperp[2],
          ];
          addBond(
            bondPos,
            vectUnitJI,
            bondLength,
            colorArray.slice(iPtsIdx, iPtsIdx + 3)
          );
        } else {
          const bondLength = Math.sqrt(diffsq);
 
          bondPos = [
            pointsArray[jPtsIdx] - diff[0] / 2.0 + offset * vectUnitJIperp[0],
            pointsArray[jPtsIdx + 1] -
              diff[1] / 2.0 +
              offset * vectUnitJIperp[1],
            pointsArray[jPtsIdx + 2] -
              diff[2] / 2.0 +
              offset * vectUnitJIperp[2],
          ];
          if (colorArray.length > 0) {
            addBond(
              bondPos,
              vectUnitJI,
              bondLength,
              colorArray.slice(iPtsIdx, iPtsIdx + 3)
            );
          } else E{
            addBond(bondPos, vectUnitJI, bondLength);
          }
        }
      }
    }
 
    SphereData.getPoints().setData(pointsData, 3);
 
    if (radiusArray) {
      const scales = vtkDataArray.newInstance({
        numberOfComponents: 1,
        values: scaleData,
        name: publicAPI.getSphereScaleArrayName(),
      });
      SphereData.getPointData().addArray(scales);
    }
 
    if (colorArray.length > 0) {
      const colors = vtkDataArray.newInstance({
        numberOfComponents: 3,
        values: Uint8Array.from(colorData),
        name: 'colors',
      });
      SphereData.getPointData().setScalars(colors);
    }
 
    StickData.getPoints().setData(bondPositionData, 3);
 
    const stickScales = vtkDataArray.newInstance({
      numberOfComponents: 2,
      values: bondScaleData,
      name: 'stickScales',
    });
    StickData.getPointData().addArray(stickScales);
 
    const orientation = vtkDataArray.newInstance({
      numberOfComponents: 3,
      values: bondOrientationData,
      name: 'orientation',
    });
    StickData.getPointData().addArray(orientation);
 
    if (colorArray.length > 0) {
      const bondColors = vtkDataArray.newInstance({
        numberOfComponents: 3,
        values: Uint8Array.from(bondColorData),
        name: 'colors',
      });
      StickData.getPointData().setScalars(bondColors);
    }
 
    // Update output
    outData[0] = SphereData;
    outData[1] = StickData;
 
    return 1;
  };
}
 
// ----------------------------------------------------------------------------
// Object factory
// ----------------------------------------------------------------------------
 
const DEFAULT_VALUES = {
  sphereScaleArrayName: 'radius',
  tolerance: 0.45,
  atomicRadiusScaleFactor: 0.3,
  bondRadius: 0.075,
  deltaBondFactor: 0.6,
  radiusType: 'radiusVDW',
  hideElements: '',
};
 
// ----------------------------------------------------------------------------
 
export function extend(publicAPI, model, initialValues = {}) {
  Object.assign(model, DEFAULT_VALUES, initialValues);
 
  // Build VTK API
  macro.obj(publicAPI, model);
  macro.setGet(publicAPI, model, [
    'atomicRadiusScaleFactor',
    'bondRadius',
    'deltaBondFactor',
    'hideElements',
    'radiusType',
    'sphereScaleArrayName',
    'tolerance',
  ]);
  macro.algo(publicAPI, model, 1, 2);
  vtkMoleculeToRepresentation(publicAPI, model);
}
 
// ----------------------------------------------------------------------------
 
export const newInstance = macro.newInstance(
  extend,
  'vtkMoleculeToRepresentation'
);
 
// ----------------------------------------------------------------------------
 
export default { newInstance, extend };