Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 | 1x 1x 12x 32x 32x 32x 32x 10x 32x 46x 46x 46x 46x 30x 30x 30x 30x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 48x 16x 16x 16x 20x 20x 11x 11x 11x 11x 11x 33x 11x 11x 11x 11x 7x 7x 7x 16x 9x 18x 5x 5x 5x 5x 16x 16x 16x 10x 10x 7x 3x 3x 3x 3x 3x 9x 3x 3x 3x 3x 3x 3x 3x 16x 46x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 46x 16x 16x 16x 48x 48x 48x 16x 30x 16x 48x 48x 48x 16x 14x 42x 14x 14x 42x 42x 46x 46x 138x 46x 46x 46x 46x 46x 46x 46x 4x 42x 42x 4x 4x 46x 46x 502x 1506x 1506x 1506x 1506x 502x 502x 16x 5x 5x 5x 5x 49x 49x 147x 147x 49x 49x 5x 5x 5x 49x 49x 147x 147x 49x 49x 16x 16x 16x 16x 16x 16x 16x 16x 16x 33x 16x 17x 17x 16x 16x 16x 165x 165x 165x 165x 502x 502x 502x 165x 16x 5x 5x 5x 5x 5x 5x 5x 5x 39x 18x 18x 18x 21x 21x 21x 5x 5x 5x 5x 5x 5x 39x 18x 18x 18x 21x 21x 21x 5x 16x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 16x 16x 16x 16x 5x 12x 12x 1x 11x 1x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 10x 10x 10x 12x 12x 4x 12x 12x 2x 2x 2x 12x 12x 12x 12x 3x 3x 3x 12x 12x 12x 12x 12x 12x 12x 12x 12x 3x 12x 12x 12x 12x 12x 12x 12x 12x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 16x 12x 12x 12x 12x 12x 1x 12x 12x 12x 12x 12x 1x | import macro from 'vtk.js/Sources/macros'; import vtkCellArray from 'vtk.js/Sources/Common/Core/CellArray'; import vtkDataArray from 'vtk.js/Sources/Common/Core/DataArray'; import * as vtkMath from 'vtk.js/Sources/Common/Core/Math'; import vtkPoints from 'vtk.js/Sources/Common/Core/Points'; import vtkPolyData from 'vtk.js/Sources/Common/DataModel/PolyData'; import { DesiredOutputPrecision } from 'vtk.js/Sources/Common/DataModel/DataSetAttributes/Constants'; import { VtkDataTypes } from 'vtk.js/Sources/Common/Core/DataArray/Constants'; import Constants from './Constants'; const { VaryRadius, GenerateTCoords } = Constants; const { vtkDebugMacro, vtkErrorMacro, vtkWarningMacro } = macro; // ---------------------------------------------------------------------------- // vtkTubeFilter methods // ---------------------------------------------------------------------------- function vtkTubeFilter(publicAPI, model) { // Set our classname model.classHierarchy.push('vtkTubeFilter'); function computeOffset(offset, npts) { let newOffset = offset; if (model.sidesShareVertices) { newOffset += model.numberOfSides * npts; } else E{ // points are duplicated newOffset += 2 * model.numberOfSides * npts; } if (model.capping) { // cap points are duplicated newOffset += 2 * model.numberOfSides; } return newOffset; } function findNextValidSegment(points, pointIds, start) { const ptId = pointIds[start]; const ps = points.slice(3 * ptId, 3 * (ptId + 1)); let end = start + 1; while (end < pointIds.length) { const endPtId = pointIds[end]; const pe = points.slice(3 * endPtId, 3 * (endPtId + 1)); if (ps !== pe) { return end - 1; } ++end; } return pointIds.length; } function generateSlidingNormals(pts, lines, normals, firstNormal = null) { let normal = [0.0, 0.0, 1.0]; const lineData = lines; // lid = 0; let npts = lineData[0]; for (let i = 0; i < lineData.length; i += npts + 1) { npts = lineData[i]; Iif (npts === 1) { // return arbitrary normals.setTuple(lineData[i + 1], normal); } else if (npts > 1) { let sNextId = 0; let sPrev = [0, 0, 0]; const sNext = [0, 0, 0]; const linePts = lineData.slice(i + 1, i + 1 + npts); sNextId = findNextValidSegment(pts, linePts, 0); if (sNextId !== npts) { // at least one valid segment let pt1Id = linePts[sNextId]; let pt1 = pts.slice(3 * pt1Id, 3 * (pt1Id + 1)); let pt2Id = linePts[sNextId + 1]; let pt2 = pts.slice(3 * pt2Id, 3 * (pt2Id + 1)); sPrev = pt2.map((elem, idx) => elem - pt1[idx]); vtkMath.normalize(sPrev); // compute first normal Iif (firstNormal) { normal = firstNormal; } else { // find the next valid, non-parallel segment while (++sNextId < npts) { sNextId = findNextValidSegment(pts, linePts, sNextId); if (sNextId !== npts) { pt1Id = linePts[sNextId]; pt1 = pts.slice(3 * pt1Id, 3 * (pt1Id + 1)); pt2Id = linePts[sNextId + 1]; pt2 = pts.slice(3 * pt2Id, 3 * (pt2Id + 1)); for (let j = 0; j < 3; ++j) { sNext[j] = pt2[j] - pt1[j]; } vtkMath.normalize(sNext); // now the starting normal should simply be the cross product. // In the following if statement, we check for the case where // the two segments are parallel, in which case, continue // searching for the next valid segment const n = [0.0, 0.0, 0.0]; vtkMath.cross(sPrev, sNext, n); if (vtkMath.norm(n) > 1.0e-3) { normal = n; sPrev = sNext; break; } } } if (sNextId >= npts) { // only one valid segment // a little trick to find orthogonal normal for (let j = 0; j < 3; ++j) { if (sPrev[j] !== 0.0) { normal[(j + 2) % 3] = 0.0; normal[(j + 1) % 3] = 1.0; normal[j] = -sPrev[(j + 1) % 3] / sPrev[j]; break; } } } } vtkMath.normalize(normal); // compute remaining normals let lastNormalId = 0; while (++sNextId < npts) { sNextId = findNextValidSegment(pts, linePts, sNextId); if (sNextId === npts) { break; } pt1Id = linePts[sNextId]; pt1 = pts.slice(3 * pt1Id, 3 * (pt1Id + 1)); pt2Id = linePts[sNextId + 1]; pt2 = pts.slice(3 * pt2Id, 3 * (pt2Id + 1)); for (let j = 0; j < 3; ++j) { sNext[j] = pt2[j] - pt1[j]; } vtkMath.normalize(sNext); // compute rotation vector const w = [0.0, 0.0, 0.0]; vtkMath.cross(sPrev, normal, w); if (vtkMath.normalize(w) !== 0.0) { // can't use this segment otherwise const q = [0.0, 0.0, 0.0]; vtkMath.cross(sNext, sPrev, q); Iif (vtkMath.normalize(q) !== 0.0) { // can't use this segment otherwise const f1 = vtkMath.dot(q, normal); let f2 = 1.0 - f1 * f1; if (f2 > 0.0) { f2 = Math.sqrt(f2); } else { f2 = 0.0; } const c = [0, 0, 0]; for (let j = 0; j < 3; ++j) { c[j] = sNext[j] + sPrev[j]; } vtkMath.normalize(c); vtkMath.cross(c, q, w); vtkMath.cross(sPrev, q, c); if (vtkMath.dot(normal, c) * vtkMath.dot(w, c) < 0.0) { f2 *= -1.0; } // insert current normal before updating for (let j = lastNormalId; j < sNextId; ++j) { normals.setTuple(linePts[j], normal); } lastNormalId = sNextId; sPrev = sNext; // compute next normal normal = f1 * q + f2 * w; } } } // insert last normal for the remaining points for (let j = lastNormalId; j < npts; ++j) { normals.setTuple(linePts[j], normal); } } else E{ // no valid segments for (let j = 0; j < npts; ++j) { normals.setTuple(linePts[j], normal); } } } } return 1; } function generatePoints( offset, npts, pts, inPts, newPts, pd, outPD, newNormals, inScalars, range, inVectors, maxSpeed, inNormals, theta ) { // Use averaged segment to create beveled effect. const sNext = [0.0, 0.0, 0.0]; const sPrev = [0.0, 0.0, 0.0]; const startCapNorm = [0.0, 0.0, 0.0]; const endCapNorm = [0.0, 0.0, 0.0]; let p = [0.0, 0.0, 0.0]; let pNext = [0.0, 0.0, 0.0]; let s = [0.0, 0.0, 0.0]; let n = [0.0, 0.0, 0.0]; const w = [0.0, 0.0, 0.0]; const nP = [0.0, 0.0, 0.0]; const normal = [0.0, 0.0, 0.0]; let sFactor = 1.0; let ptId = offset; const vector = []; for (let j = 0; j < npts; ++j) { // First point if (j === 0) { p = inPts.slice(3 * pts[0], 3 * (pts[0] + 1)); pNext = inPts.slice(3 * pts[1], 3 * (pts[1] + 1)); for (let i = 0; i < 3; ++i) { sNext[i] = pNext[i] - p[i]; sPrev[i] = sNext[i]; startCapNorm[i] = -sPrev[i]; } vtkMath.normalize(startCapNorm); } else if (j === npts - 1) { for (let i = 0; i < 3; ++i) { sPrev[i] = sNext[i]; p[i] = pNext[i]; endCapNorm[i] = sNext[i]; } vtkMath.normalize(endCapNorm); } else { for (let i = 0; i < 3; ++i) { p[i] = pNext[i]; } pNext = inPts.slice(3 * pts[j + 1], 3 * (pts[j + 1] + 1)); for (let i = 0; i < 3; ++i) { sPrev[i] = sNext[i]; sNext[i] = pNext[i] - p[i]; } } Iif (vtkMath.normalize(sNext) === 0.0) { vtkWarningMacro('Coincident points!'); return 0; } for (let i = 0; i < 3; ++i) { s[i] = (sPrev[i] + sNext[i]) / 2.0; // average vector } n = inNormals.slice(3 * pts[j], 3 * (pts[j] + 1)); // if s is zero then just use sPrev cross n Iif (vtkMath.normalize(s) === 0.0) { vtkMath.cross(sPrev, n, s); if (vtkMath.normalize(s) === 0.0) { vtkDebugMacro('Using alternate bevel vector'); } } vtkMath.cross(s, n, w); Iif (vtkMath.normalize(w) === 0.0) { let msg = 'Bad normal: s = '; msg += `${s[0]}, ${s[1]}, ${s[2]}`; msg += ` n = ${n[0]}, ${n[1]}, ${n[2]}`; vtkWarningMacro(msg); return 0; } vtkMath.cross(w, s, nP); // create orthogonal coordinate system vtkMath.normalize(nP); // Compute a scalar factor based on scalars or vectors if (inScalars && model.varyRadius === VaryRadius.VARY_RADIUS_BY_SCALAR) { sFactor = 1.0 + ((model.radiusFactor - 1.0) * (inScalars.getComponent(pts[j], 0) - range[0])) / (range[1] - range[0]); } else Iif ( inVectors && model.varyRadius === VaryRadius.VARY_RADIUS_BY_VECTOR ) { sFactor = Math.sqrt( maxSpeed / vtkMath.norm(inVectors.getTuple(pts[j], vector)) ); if (sFactor > model.radiusFactor) { sFactor = model.radiusFactor; } } else if ( inScalars && model.varyRadius === VaryRadius.VARY_RADIUS_BY_ABSOLUTE_SCALAR ) { sFactor = inScalars.getComponent(pts[j], 0); Iif (sFactor < 0.0) { vtkWarningMacro('Scalar value less than zero, skipping line'); return 0; } } // create points around line if (model.sidesShareVertices) { for (let k = 0; k < model.numberOfSides; ++k) { for (let i = 0; i < 3; ++i) { normal[i] = w[i] * Math.cos(k * theta) + nP[i] * Math.sin(k * theta); s[i] = p[i] + model.radius * sFactor * normal[i]; newPts[3 * ptId + i] = s[i]; newNormals[3 * ptId + i] = normal[i]; } outPD.passData(pd, pts[j], ptId); ptId++; } // for each side } else E{ const nRight = [0, 0, 0]; const nLeft = [0, 0, 0]; for (let k = 0; k < model.numberOfSides; ++k) { for (let i = 0; i < 3; ++i) { // Create duplicate vertices at each point // and adjust the associated normals so that they are // oriented with the facets. This preserves the tube's // polygonal appearance, as if by flat-shading around the tube, // while still allowing smooth (gouraud) shading along the // tube as it bends. normal[i] = w[i] * Math.cos(k * theta) + nP[i] * Math.sin(k * theta); nRight[i] = w[i] * Math.cos((k - 0.5) * theta) + nP[i] * Math.sin((k - 0.5) * theta); nLeft[i] = w[i] * Math.cos((k + 0.5) * theta) + nP[i] * Math.sin((k + 0.5) * theta); s[i] = p[i] + model.radius * sFactor * normal[i]; newPts[3 * ptId + i] = s[i]; newNormals[3 * ptId + i] = nRight[i]; newPts[3 * (ptId + 1) + i] = s[i]; newNormals[3 * (ptId + 1) + i] = nLeft[i]; } outPD.passData(pd, pts[j], ptId + 1); ptId += 2; } // for each side } // else separate vertices } // for all points in the polyline // Produce end points for cap. They are placed at tail end of points. if (model.capping) { let numCapSides = model.numberOfSides; let capIncr = 1; Iif (!model.sidesShareVertices) { numCapSides = 2 * model.numberOfSides; capIncr = 2; } // the start cap for (let k = 0; k < numCapSides; k += capIncr) { s = newPts.slice(3 * (offset + k), 3 * (offset + k + 1)); for (let i = 0; i < 3; ++i) { newPts[3 * ptId + i] = s[i]; newNormals[3 * ptId + i] = startCapNorm[i]; } outPD.passData(pd, pts[0], ptId); ptId++; } // the end cap let endOffset = offset + (npts - 1) * model.numberOfSides; Iif (!model.sidesShareVertices) { endOffset = offset + 2 * (npts - 1) * model.numberOfSides; } for (let k = 0; k < numCapSides; k += capIncr) { s = newPts.slice(3 * (endOffset + k), 3 * (endOffset + k + 1)); for (let i = 0; i < 3; ++i) { newPts[3 * ptId + i] = s[i]; newNormals[3 * ptId + i] = endCapNorm[i]; } outPD.passData(pd, pts[npts - 1], ptId); ptId++; } } // if capping return 1; } function generateStrips( offset, npts, inCellId, outCellId, inCD, outCD, newStrips ) { let i1 = 0; let i2 = 0; let i3 = 0; let newOutCellId = outCellId; let outCellIdx = 0; const newStripsData = newStrips.getData(); let cellId = 0; while (outCellIdx < newStripsData.length) { if (cellId === outCellId) { break; } outCellIdx += newStripsData[outCellIdx] + 1; cellId++; } if (model.sidesShareVertices) { for ( let k = offset; k < model.numberOfSides + offset; k += model.onRatio ) { i1 = k % model.numberOfSides; i2 = (k + 1) % model.numberOfSides; newStripsData[outCellIdx++] = npts * 2; for (let i = 0; i < npts; ++i) { i3 = i * model.numberOfSides; newStripsData[outCellIdx++] = offset + i2 + i3; newStripsData[outCellIdx++] = offset + i1 + i3; } outCD.passData(inCD, inCellId, newOutCellId++); } // for each side of the tube } else E{ for ( let k = offset; k < model.numberOfSides + offset; k += model.onRatio ) { i1 = 2 * (k % model.numberOfSides) + 1; i2 = 2 * ((k + 1) % model.numberOfSides); // outCellId = newStrips.getNumberOfCells(true); newStripsData[outCellIdx] = npts * 2; outCellIdx++; for (let i = 0; i < npts; ++i) { i3 = i * 2 * model.numberOfSides; newStripsData[outCellIdx++] = offset + i2 + i3; newStripsData[outCellIdx++] = offset + i1 + i3; } outCD.passData(inCD, inCellId, newOutCellId++); } // for each side of the tube } // Take care of capping. The caps are n-sided polygons that can be easily // triangle stripped. if (model.capping) { let startIdx = offset + npts * model.numberOfSides; let idx = 0; Iif (!model.sidesShareVertices) { startIdx = offset + 2 * npts * model.numberOfSides; } // The start cap newStripsData[outCellIdx++] = model.numberOfSides; newStripsData[outCellIdx++] = startIdx; newStripsData[outCellIdx++] = startIdx + 1; let k = 0; for ( i1 = model.numberOfSides - 1, i2 = 2, k = 0; k < model.numberOfSides - 2; ++k ) { if (k % 2) { idx = startIdx + i2; newStripsData[outCellIdx++] = idx; i2++; } else { idx = startIdx + i1; newStripsData[outCellIdx++] = idx; i1--; } } outCD.passData(inCD, inCellId, newOutCellId++); // The end cap - reversed order to be consistent with normal startIdx += model.numberOfSides; newStripsData[outCellIdx++] = model.numberOfSides; newStripsData[outCellIdx++] = startIdx; newStripsData[outCellIdx++] = startIdx + model.numberOfSides - 1; for ( i1 = model.numberOfSides - 2, i2 = 1, k = 0; k < model.numberOfSides - 2; ++k ) { if (k % 2) { idx = startIdx + i1; newStripsData[outCellIdx++] = idx; i1--; } else { idx = startIdx + i2; newStripsData[outCellIdx++] = idx; i2++; } } outCD.passData(inCD, inCellId, newOutCellId++); } return newOutCellId; } function generateTCoords(offset, npts, pts, inPts, inScalars, newTCoords) { let numSides = model.numberOfSides; if (!model.sidesShareVertices) { numSides = 2 * model.numberOfSides; } let tc = 0.0; let s0 = 0.0; let s = 0.0; const inScalarsData = inScalars.getData(); if (model.generateTCoords === GenerateTCoords.TCOORDS_FROM_SCALARS) { s0 = inScalarsData[pts[0]]; for (let i = 0; i < npts; ++i) { s = inScalarsData[pts[i]]; tc = (s - s0) / model.textureLength; for (let k = 0; k < numSides; ++k) { const tcy = k / (numSides - 1); const tcId = 2 * (offset + i * numSides + k); newTCoords[tcId] = tc; newTCoords[tcId + 1] = tcy; } } } else if (model.generateTCoords === GenerateTCoords.TCOORDS_FROM_LENGTH) { let len = 0.0; const xPrev = inPts.slice(3 * pts[0], 3 * (pts[0] + 1)); for (let i = 0; i < npts; ++i) { const x = inPts.slice(3 * pts[i], 3 * (pts[i] + 1)); len += Math.sqrt(vtkMath.distance2BetweenPoints(x, xPrev)); tc = len / model.textureLength; for (let k = 0; k < numSides; ++k) { const tcy = k / (numSides - 1); const tcId = 2 * (offset + i * numSides + k); newTCoords[tcId] = tc; newTCoords[tcId + 1] = tcy; } for (let k = 0; k < 3; ++k) { xPrev[k] = x[k]; } } } else if ( model.generateTCoords === GenerateTCoords.TCOORDS_FROM_NORMALIZED_LENGTH ) { let len = 0.0; let len1 = 0.0; let xPrev = inPts.slice(3 * pts[0], 3 * (pts[0] + 1)); for (let i = 0; i < npts; ++i) { const x = inPts.slice(3 * pts[i], 3 * (pts[i] + 1)); len1 += Math.sqrt(vtkMath.distance2BetweenPoints(x, xPrev)); for (let k = 0; k < 3; ++k) { xPrev[k] = x[k]; } } xPrev = inPts.slice(3 * pts[0], 3 * (pts[0] + 1)); for (let i = 0; i < npts; ++i) { const x = inPts.slice(3 * pts[i], 3 * (pts[i] + 1)); len += Math.sqrt(vtkMath.distance2BetweenPoints(x, xPrev)); tc = len / len1; for (let k = 0; k < numSides; ++k) { const tcy = k / (numSides - 1); const tcId = 2 * (offset + i * numSides + k); newTCoords[tcId] = tc; newTCoords[tcId + 1] = tcy; } for (let k = 0; k < 3; ++k) { xPrev[k] = x[k]; } } } // Capping, set the endpoints as appropriate if (model.capping) { const startIdx = offset + npts * numSides; // start cap for (let ik = 0; ik < model.numberOfSides; ++ik) { const tcId = 2 * (startIdx + ik); newTCoords[tcId] = 0.0; newTCoords[tcId + 1] = 0.0; } // end cap for (let ik = 0; ik < model.numberOfSides; ++ik) { const tcId = 2 * (startIdx + model.numberOfSides + ik); newTCoords[tcId] = 0.0; newTCoords[tcId + 1] = 0.0; } } } publicAPI.requestData = (inData, outData) => { // implement requestData // pass through for now const output = vtkPolyData.newInstance(); outData[0] = output; const input = inData[0]; Iif (!input) { vtkErrorMacro('Invalid or missing input'); return; } // Allocate output const inPts = input.getPoints(); Iif (!inPts) { return; } const numPts = inPts.getNumberOfPoints(); Iif (numPts < 1) { return; } const inLines = input.getLines(); Iif (!inLines) { return; } const numLines = inLines.getNumberOfCells(); Iif (numLines < 1) { return; } let numNewPts = 0; let numStrips = 0; const inLinesData = inLines.getData(); let npts = inLinesData[0]; for (let i = 0; i < inLinesData.length; i += npts + 1) { npts = inLinesData[i]; numNewPts = computeOffset(numNewPts, npts); numStrips += (2 * npts + 1) * Math.ceil(model.numberOfSides / model.onRatio); if (model.capping) { numStrips += 2 * (model.numberOfSides + 1); } } let pointType = inPts.getDataType(); if (model.outputPointsPrecision === DesiredOutputPrecision.SINGLE) { pointType = VtkDataTypes.FLOAT; } else if (model.outputPointsPrecision === DesiredOutputPrecision.DOUBLE) { pointType = VtkDataTypes.DOUBLE; } const newPts = vtkPoints.newInstance({ dataType: pointType, size: numNewPts * 3, numberOfComponents: 3, }); const numNormals = 3 * numNewPts; const newNormalsData = new Float32Array(numNormals); const newNormals = vtkDataArray.newInstance({ numberOfComponents: 3, values: newNormalsData, name: 'TubeNormals', }); const newStripsData = new Uint32Array(numStrips); const newStrips = vtkCellArray.newInstance({ values: newStripsData }); let newStripId = 0; let inNormals = input.getPointData().getNormals(); let inNormalsData = null; let generateNormals = false; if (!inNormals || model.useDefaultNormal) { inNormalsData = new Float32Array(3 * numPts); inNormals = vtkDataArray.newInstance({ numberOfComponents: 3, values: inNormalsData, name: 'Normals', }); Iif (model.useDefaultNormal) { inNormalsData = inNormalsData.map((elem, index) => { const i = index % 3; return model.defaultNormal[i]; }); } else { generateNormals = true; } } // loop over pointData arrays and resize based on numNewPts const numArrays = input.getPointData().getNumberOfArrays(); let oldArray = null; let newArray = null; for (let i = 0; i < numArrays; i++) { oldArray = input.getPointData().getArrayByIndex(i); newArray = vtkDataArray.newInstance({ name: oldArray.getName(), dataType: oldArray.getDataType(), numberOfComponents: oldArray.getNumberOfComponents(), size: numNewPts * oldArray.getNumberOfComponents(), }); output.getPointData().addArray(newArray); // concat newArray to end } // loop over cellData arrays and resize based on numNewCells let numNewCells = inLines.getNumberOfCells() * model.numberOfSides; if (model.capping) { numNewCells += 2; } const numCellArrays = input.getCellData().getNumberOfArrays(); for (let i = 0; i < numCellArrays; i++) { oldArray = input.getCellData().getArrayByIndex(i); newArray = vtkDataArray.newInstance({ name: oldArray.getName(), dataType: oldArray.getDataType(), numberOfComponents: oldArray.getNumberOfComponents(), size: numNewCells * oldArray.getNumberOfComponents(), }); output.getCellData().addArray(newArray); // concat newArray to end } const inScalars = publicAPI.getInputArrayToProcess(0); let outScalars = null; let range = []; if (inScalars) { // allocate output scalar array // assuming point scalars for now outScalars = vtkDataArray.newInstance({ name: inScalars.getName(), dataType: inScalars.getDataType(), numberOfComponents: inScalars.getNumberOfComponents(), size: numNewPts * inScalars.getNumberOfComponents(), }); range = inScalars.getRange(); Iif (range[1] - range[0] === 0.0) { if (model.varyRadius === VaryRadius.VARY_RADIUS_BY_SCALAR) { vtkWarningMacro('Scalar range is zero!'); } range[1] = range[0] + 1.0; } } const inVectors = publicAPI.getInputArrayToProcess(1); let maxSpeed = 0; Iif (inVectors) { maxSpeed = inVectors.getMaxNorm(); } const outCD = output.getCellData(); outCD.copyNormalsOff(); outCD.passData(input.getCellData()); const outPD = output.getPointData(); Iif (outPD.getNormals() !== null) { outPD.copyNormalsOff(); } if (inScalars && outScalars) { outPD.setScalars(outScalars); } // TCoords let newTCoords = null; Iif ( (model.generateTCoords === GenerateTCoords.TCOORDS_FROM_SCALARS && inScalars) || model.generateTCoords === GenerateTCoords.TCOORDS_FROM_LENGTH || model.generateTCoords === GenerateTCoords.TCOORDS_FROM_NORMALIZED_LENGTH ) { const newTCoordsData = new Float32Array(2 * numNewPts); newTCoords = vtkDataArray.newInstance({ numberOfComponents: 2, values: newTCoordsData, name: 'TCoords', }); outPD.copyTCoordsOff(); } outPD.passData(input.getPointData()); // Create points along each polyline that are connected into numberOfSides // triangle strips. const theta = (2.0 * Math.PI) / model.numberOfSides; npts = inLinesData[0]; let offset = 0; let inCellId = input.getVerts().getNumberOfCells(); for (let i = 0; i < inLinesData.length; i += npts + 1) { npts = inLinesData[i]; const pts = inLinesData.slice(i + 1, i + 1 + npts); if (npts > 1) { // if not, skip tubing this line if (generateNormals) { const polyLine = inLinesData.slice(i, i + npts + 1); generateSlidingNormals(inPts.getData(), polyLine, inNormals); } } // generate points if ( generatePoints( offset, npts, pts, inPts.getData(), newPts.getData(), input.getPointData(), outPD, newNormalsData, inScalars, range, inVectors, maxSpeed, inNormalsData, theta ) ) { // generate strips for the polyline newStripId = generateStrips( offset, npts, inCellId, newStripId, input.getCellData(), outCD, newStrips ); // generate texture coordinates for the polyline Iif (newTCoords) { generateTCoords( offset, npts, pts, inPts.getData(), inScalars, newTCoords.getData() ); } } else E{ // skip tubing this line vtkWarningMacro('Could not generate points'); } // lineIdx += npts; // Compute the new offset for the next polyline offset = computeOffset(offset, npts); inCellId++; } output.setPoints(newPts); output.setStrips(newStrips); output.setPointData(outPD); outPD.setNormals(newNormals); outData[0] = output; }; } // ---------------------------------------------------------------------------- // Object factory // ---------------------------------------------------------------------------- const DEFAULT_VALUES = { outputPointsPrecision: DesiredOutputPrecision.DEFAULT, radius: 0.5, varyRadius: VaryRadius.VARY_RADIUS_OFF, numberOfSides: 3, radiusFactor: 10, defaultNormal: [0, 0, 1], useDefaultNormal: false, sidesShareVertices: true, capping: false, onRatio: 1, offset: 0, generateTCoords: GenerateTCoords.TCOORDS_OFF, textureLength: 1.0, }; // ---------------------------------------------------------------------------- export function extend(publicAPI, model, initialValues = {}) { Object.assign(model, DEFAULT_VALUES, initialValues); // Build VTK API macro.setGet(publicAPI, model, [ 'outputPointsPrecision', 'radius', 'varyRadius', 'numberOfSides', 'radiusFactor', 'defaultNormal', 'useDefaultNormal', 'sidesShareVertices', 'capping', 'onRatio', 'offset', 'generateTCoords', 'textureLength', ]); // Make this a VTK object macro.obj(publicAPI, model); // Also make it an algorithm with one input and one output macro.algo(publicAPI, model, 1, 1); // Object specific methods vtkTubeFilter(publicAPI, model); } // ---------------------------------------------------------------------------- export const newInstance = macro.newInstance(extend, 'vtkTubeFilter'); // ---------------------------------------------------------------------------- export default { newInstance, extend }; |