Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | import macro from 'vtk.js/Sources/macros'; import vtkBoundingBox from 'vtk.js/Sources/Common/DataModel/BoundingBox'; import vtkDataArray from 'vtk.js/Sources/Common/Core/DataArray'; import vtkMath from 'vtk.js/Sources/Common/Core/Math/index'; import { AttributeTypes } from 'vtk.js/Sources/Common/DataModel/DataSetAttributes/Constants'; import vtkPoints from 'vtk.js/Sources/Common/Core/Points'; import vtkPolyData from 'vtk.js/Sources/Common/DataModel/PolyData'; import vtkTriangle from 'vtk.js/Sources/Common/DataModel/Triangle'; const VertexType = { VTK_SIMPLE_VERTEX: 0, VTK_FIXED_VERTEX: 1, VTK_FEATURE_EDGE_VERTEX: 2, VTK_BOUNDARY_EDGE_VERTEX: 3, }; // ---------------------------------------------------------------------------- // vtkWindowedSincPolyDataFilter methods // ---------------------------------------------------------------------------- function vtkWindowedSincPolyDataFilter(publicAPI, model) { // Set our className model.classHierarchy.push('vtkWindowedSincPolyDataFilter'); publicAPI.vtkWindowedSincPolyDataFilterExecute = ( inPts, inputPolyData, output ) => { if (!inPts || model.numberOfIterations <= 0) { return inPts; } const inPtsData = inPts.getData(); const inVerts = inputPolyData.getVerts().getData(); const inLines = inputPolyData.getLines().getData(); const inPolys = inputPolyData.getPolys().getData(); const inStrips = inputPolyData.getStrips().getData(); const cosFeatureAngle = Math.cos( vtkMath.radiansFromDegrees(model.featureAngle) ); const cosEdgeAngle = Math.cos(vtkMath.radiansFromDegrees(model.edgeAngle)); const numPts = inPts.getNumberOfPoints(); // Perform topological analysis. What we're going to do is build a connectivity // array of connected vertices. The outcome will be one of three // classifications for a vertex: VTK_SIMPLE_VERTEX, VTK_FIXED_VERTEX. or // VTK_EDGE_VERTEX. Simple vertices are smoothed using all connected // vertices. FIXED vertices are never smoothed. Edge vertices are smoothed // using a subset of the attached vertices. const verts = new Array(numPts); for (let i = 0; i < numPts; ++i) { verts[i] = { type: VertexType.VTK_SIMPLE_VERTEX, edges: null, }; } // check vertices first. Vertices are never smoothed_-------------- let npts = 0; for (let i = 0; i < inVerts.length; i += npts + 1) { npts = inVerts[i]; const pts = inVerts.slice(i + 1, i + 1 + npts); for (let j = 0; j < pts.length; ++j) { verts[pts[j]].type = VertexType.VTK_FIXED_VERTEX; } } // now check lines. Only manifold lines can be smoothed------------ for (let i = 0; i < inLines.length; i += npts + 1) { npts = inLines[i]; const pts = inLines.slice(i + 1, i + 1 + npts); // Check for closed loop which are treated specially. Basically the // last point is ignored (set to fixed). const closedLoop = pts[0] === pts[npts - 1] && npts > 3; for (let j = 0; j < npts; ++j) { if (verts[pts[j]].type === VertexType.VTK_SIMPLE_VERTEX) { // First point if (j === 0) { if (!closedLoop) { verts[pts[0]].type = VertexType.VTK_FIXED_VERTEX; } else { verts[pts[0]].type = VertexType.VTK_FEATURE_EDGE_VERTEX; verts[pts[0]].edges = [pts[npts - 2], pts[1]]; } } // Last point else if (j === npts - 1 && !closedLoop) { verts[pts[j]].type = VertexType.VTK_FIXED_VERTEX; } // In between point // is edge vertex (unless already edge vertex!) else { verts[pts[j]].type = VertexType.VTK_FEATURE_EDGE_VERTEX; verts[pts[j]].edges = [ pts[j - 1], pts[closedLoop && j === npts - 2 ? 0 : j + 1], ]; } } // if simple vertex // Vertex has been visited before, need to fix it. Special case // when working on closed loop. else if ( verts[pts[j]].type === VertexType.VTK_FEATURE_EDGE_VERTEX && !(closedLoop && j === npts - 1) ) { verts[pts[j]].type = VertexType.VTK_FIXED_VERTEX; verts[pts[j]].edges = null; } } // for all points in this line } // for all lines // now polygons and triangle strips------------------------------- const numPolys = inPolys.length; const numStrips = inStrips.length; if (numPolys > 0 || numStrips > 0) { const inMesh = vtkPolyData.newInstance(); inMesh.setPoints(inputPolyData.getPoints()); inMesh.setPolys(inputPolyData.getPolys()); const mesh = inMesh; let neighbors = []; let nei = 0; // const numNeiPts = 0; const normal = []; const neiNormal = []; /* TODO: Add vtkTriangleFilter if ( (numStrips = inputPolyData.getStrips().GetNumberOfCells()) > 0 ) { // convert data to triangles inMesh.setStrips(inputPolyData.getStrips()); const toTris = vtkTriangleFilter.newInstance(); toTris.setInputData(inMesh); toTris.update(); mesh = toTris.getOutput(); } */ mesh.buildLinks(); // to do neighborhood searching const polys = mesh.getPolys().getData(); let cellId = 0; for (let c = 0; c < polys.length; c += npts + 1, ++cellId) { npts = polys[c]; const pts = polys.slice(c + 1, c + 1 + npts); for (let i = 0; i < npts; ++i) { const p1 = pts[i]; const p2 = pts[(i + 1) % npts]; if (verts[p1].edges === null) { verts[p1].edges = []; } if (verts[p2].edges == null) { verts[p2].edges = []; } neighbors = mesh.getCellEdgeNeighbors(cellId, p1, p2); const numNei = neighbors.length; // neighbors->GetNumberOfIds(); let edge = VertexType.VTK_SIMPLE_VERTEX; if (numNei === 0) { edge = VertexType.VTK_BOUNDARY_EDGE_VERTEX; } else if (numNei >= 2) { // non-manifold case, check nonmanifold smoothing state if (!model.nonManifoldSmoothing) { // check to make sure that this edge hasn't been marked already let j = 0; for (; j < numNei; ++j) { if (neighbors[j] < cellId) { break; } } if (j >= numNei) { edge = VertexType.VTK_FEATURE_EDGE_VERTEX; } } /* eslint-disable no-cond-assign */ } else if (numNei === 1 && (nei = neighbors[0]) > cellId) { if (model.featureEdgeSmoothing) { // TODO: support polygons // vtkPolygon::ComputeNormal(inPts,npts,pts,normal); vtkTriangle.computeNormal( inPts.getPoint(pts[0]), inPts.getPoint(pts[1]), inPts.getPoint(pts[2]), normal ); const { cellPointIds } = mesh.getCellPoints(nei); // vtkPolygon::ComputeNormal(inPts,numNeiPts,neiPts,neiNormal); vtkTriangle.computeNormal( inPts.getPoint(cellPointIds[0]), inPts.getPoint(cellPointIds[1]), inPts.getPoint(cellPointIds[2]), neiNormal ); if (vtkMath.dot(normal, neiNormal) <= cosFeatureAngle) { edge = VertexType.VTK_FEATURE_EDGE_VERTEX; } } } // a visited edge; skip rest of analysis else { /* eslint-disable no-continue */ continue; } if (edge && verts[p1].type === VertexType.VTK_SIMPLE_VERTEX) { verts[p1].edges = [p2]; verts[p1].type = edge; } else if ( (edge && verts[p1].type === VertexType.VTK_BOUNDARY_EDGE_VERTEX) || (edge && verts[p1].type === VertexType.VTK_FEATURE_EDGE_VERTEX) || (!edge && verts[p1].type === VertexType.VTK_SIMPLE_VERTEX) ) { verts[p1].edges.push(p2); if ( verts[p1].type && edge === VertexType.VTK_BOUNDARY_EDGE_VERTEX ) { verts[p1].type = VertexType.VTK_BOUNDARY_EDGE_VERTEX; } } if (edge && verts[p2].type === VertexType.VTK_SIMPLE_VERTEX) { verts[p2].edges = [p1]; verts[p2].type = edge; } else if ( (edge && verts[p2].type === VertexType.VTK_BOUNDARY_EDGE_VERTEX) || (edge && verts[p2].type === VertexType.VTK_FEATURE_EDGE_VERTEX) || (!edge && verts[p2].type === VertexType.VTK_SIMPLE_VERTEX) ) { verts[p2].edges.push(p1); if ( verts[p2].type && edge === VertexType.VTK_BOUNDARY_EDGE_VERTEX ) { verts[p2].type = VertexType.VTK_BOUNDARY_EDGE_VERTEX; } } } } } // if strips or polys // post-process edge vertices to make sure we can smooth them /* eslint-disable no-unused-vars */ let numSimple = 0; let numBEdges = 0; let numFixed = 0; let numFEdges = 0; for (let i = 0; i < numPts; ++i) { if (verts[i].type === VertexType.VTK_SIMPLE_VERTEX) { ++numSimple; } else if (verts[i].type === VertexType.VTK_FIXED_VERTEX) { ++numFixed; } else if ( verts[i].type === VertexType.VTK_FEATURE_EDGE_VERTEX || verts[i].type === VertexType.VTK_BOUNDARY_EDGE_VERTEX ) { // see how many edges; if two, what the angle is if ( !model.boundarySmoothing && verts[i].type === VertexType.VTK_BOUNDARY_EDGE_VERTEX ) { verts[i].type = VertexType.VTK_FIXED_VERTEX; ++numBEdges; } else if ((npts = verts[i].edges.length) !== 2) { // can only smooth edges on 2-manifold surfaces verts[i].type = VertexType.VTK_FIXED_VERTEX; ++numFixed; } // check angle between edges else { const x1 = inPts.getPoint(verts[i].edges[0]); const x2 = inPts.getPoint(i); const x3 = inPts.getPoint(verts[i].edges[1]); const l1 = [0, 0, 0]; const l2 = [0, 0, 0]; for (let k = 0; k < 3; ++k) { l1[k] = x2[k] - x1[k]; l2[k] = x3[k] - x2[k]; } if ( vtkMath.normalize(l1) >= 0.0 && vtkMath.normalize(l2) >= 0.0 && vtkMath.dot(l1, l2) < cosEdgeAngle ) { ++numFixed; verts[i].type = VertexType.VTK_FIXED_VERTEX; } else if (verts[i].type === VertexType.VTK_FEATURE_EDGE_VERTEX) { ++numFEdges; } else { ++numBEdges; } } // if along edge } // if edge vertex } // for all points // Perform Windowed Sinc function interpolation // // console.log('Beginning smoothing iterations...'); // need 4 vectors of points let zero = 0; let one = 1; let two = 2; const three = 3; const newPts = []; newPts.push(vtkPoints.newInstance()); newPts[zero].setNumberOfPoints(numPts); newPts.push(vtkPoints.newInstance()); newPts[one].setNumberOfPoints(numPts); newPts.push(vtkPoints.newInstance()); newPts[two].setNumberOfPoints(numPts); newPts.push(vtkPoints.newInstance()); newPts[three].setNumberOfPoints(numPts); // Get the center and length of the input dataset const inCenter = vtkBoundingBox.getCenter(inputPolyData.getBounds()); const inLength = vtkBoundingBox.getDiagonalLength( inputPolyData.getBounds() ); if (!model.normalizeCoordinates) { // initialize to old coordinates // for (let i = 0; i < numPts; ++i) { // newPts[zero].setPoint(i, inPts.subarray(i)); // } const copy = macro.newTypedArray(newPts[zero].getDataType(), inPtsData); newPts[zero].setData(copy, 3); } else { // center the data and scale to be within unit cube [-1, 1] // initialize to old coordinates const normalizedPoint = [0, 0, 0]; for (let i = 0; i < numPts; ++i) { inPts.getPoint(i, normalizedPoint); normalizedPoint[0] = (normalizedPoint[0] - inCenter[0]) / inLength; normalizedPoint[1] = (normalizedPoint[1] - inCenter[1]) / inLength; normalizedPoint[2] = (normalizedPoint[2] - inCenter[2]) / inLength; newPts[zero].setPoint(i, ...normalizedPoint); } } // Smooth with a low pass filter defined as a windowed sinc function. // Taubin describes this methodology is the IBM tech report RC-20404 // (#90237, dated 3/12/96) "Optimal Surface Smoothing as Filter Design" // G. Taubin, T. Zhang and G. Golub. (Zhang and Golub are at Stanford // University) // The formulas here follow the notation of Taubin's TR, i.e. // newPts[zero], newPts[one], etc. // calculate weights and filter coefficients const kPb = model.passBand; // reasonable default for kPb in [0, 2] is 0.1 const thetaPb = Math.acos(1.0 - 0.5 * kPb); // thetaPb in [0, M_PI/2] // vtkDebugMacro(<< "thetaPb = " << thetaPb); const w = new Array(model.numberOfIterations + 1); const c = new Array(model.numberOfIterations + 1); const cprime = new Array(model.numberOfIterations + 1); const zerovector = [0, 0, 0]; // Calculate the weights and the Chebychev coefficients c. // // Windowed sinc function weights. This is for a Hamming window. Other // windowing function could be implemented here. for (let i = 0; i <= model.numberOfIterations; ++i) { w[i] = 0.54 + 0.46 * Math.cos((i * Math.PI) / (model.numberOfIterations + 1)); } // Calculate the optimal sigma (offset or fudge factor for the filter). // This is a Newton-Raphson Search. let fKpb = 0; let fPrimeKpb = 0; let done = false; let sigma = 0.0; for (let j = 0; !done && j < 500; ++j) { // Chebyshev coefficients c[0] = (w[0] * (thetaPb + sigma)) / Math.PI; for (let i = 1; i <= model.numberOfIterations; ++i) { c[i] = (2.0 * w[i] * Math.sin(i * (thetaPb + sigma))) / (i * Math.PI); } // calculate the Chebyshev coefficients for the derivative of the filter cprime[model.numberOfIterations] = 0.0; cprime[model.numberOfIterations - 1] = 0.0; if (model.numberOfIterations > 1) { cprime[model.numberOfIterations - 2] = 2.0 * (model.numberOfIterations - 1) * c[model.numberOfIterations - 1]; } for (let i = model.numberOfIterations - 3; i >= 0; --i) { cprime[i] = cprime[i + 2] + 2.0 * (i + 1) * c[i + 1]; } // Evaluate the filter and its derivative at kPb (note the discrepancy // of calculating the c's based on thetaPb + sigma and evaluating the // filter at kPb (which is equivalent to thetaPb) fKpb = 0.0; fPrimeKpb = 0.0; fKpb += c[0]; fPrimeKpb += cprime[0]; for (let i = 1; i <= model.numberOfIterations; ++i) { if (i === 1) { fKpb += c[i] * (1.0 - 0.5 * kPb); fPrimeKpb += cprime[i] * (1.0 - 0.5 * kPb); } else { fKpb += c[i] * Math.cos(i * Math.acos(1.0 - 0.5 * kPb)); fPrimeKpb += cprime[i] * Math.cos(i * Math.acos(1.0 - 0.5 * kPb)); } } // if fKpb is not close enough to 1.0, then adjust sigma if (model.numberOfIterations > 1) { if (Math.abs(fKpb - 1.0) >= 1e-3) { sigma -= (fKpb - 1.0) / fPrimeKpb; // Newton-Rhapson (want f=1) } else { done = true; } } else { // Order of Chebyshev is 1. Can't use Newton-Raphson to find an // optimal sigma. Object will most likely shrink. done = true; sigma = 0.0; } } if (Math.abs(fKpb - 1.0) >= 1e-3) { console.log( 'An optimal offset for the smoothing filter could not be found. Unpredictable smoothing/shrinkage may result.' ); } const x = [0, 0, 0]; const y = [0, 0, 0]; const deltaX = [0, 0, 0]; const xNew = [0, 0, 0]; const x1 = [0, 0, 0]; const x2 = [0, 0, 0]; // first iteration for (let i = 0; i < numPts; ++i) { if (verts[i].edges != null && (npts = verts[i].edges.length) > 0) { // point is allowed to move newPts[zero].getPoint(i, x); // use current points deltaX[0] = 0.0; deltaX[1] = 0.0; deltaX[2] = 0.0; // calculate the negative of the laplacian // for all connected points for (let j = 0; j < npts; ++j) { newPts[zero].getPoint(verts[i].edges[j], y); for (let k = 0; k < 3; ++k) { deltaX[k] += (x[k] - y[k]) / npts; } } // newPts[one] = newPts[zero] - 0.5 newPts[one] for (let k = 0; k < 3; ++k) { deltaX[k] = x[k] - 0.5 * deltaX[k]; } newPts[one].setPoint(i, ...deltaX); if (verts[i].type === VertexType.VTK_FIXED_VERTEX) { newPts[zero].getPoint(i, deltaX); } else { // calculate newPts[three] = c0 newPts[zero] + c1 newPts[one] for (let k = 0; k < 3; ++k) { deltaX[k] = c[0] * x[k] + c[1] * deltaX[k]; } } newPts[three].setPoint(i, ...deltaX); } // if can move point else { // point is not allowed to move, just use the old point... // (zero out the Laplacian) newPts[one].setPoint(i, ...zerovector); newPts[zero].getPoint(i, deltaX); newPts[three].setPoint(i, ...deltaX); } } // for all points // for the rest of the iterations const pX0 = [0, 0, 0]; const pX1 = [0, 0, 0]; const pX3 = [0, 0, 0]; let iterationNumber = 2; for (; iterationNumber <= model.numberOfIterations; iterationNumber++) { if (iterationNumber && !(iterationNumber % 5)) { // this->UpdateProgress (0.5 + 0.5*iterationNumber/this->NumberOfIterations); // if (this->GetAbortExecute()) // { // break; // } } for (let i = 0; i < numPts; ++i) { npts = verts[i].edges != null ? verts[i].edges.length : 0; if (npts > 0) { // point is allowed to move newPts[zero].getPoint(i, pX0); // use current points newPts[one].getPoint(i, pX1); deltaX[0] = 0.0; deltaX[1] = 0.0; deltaX[2] = 0.0; // calculate the negative laplacian of x1 for (let j = 0; j < npts; ++j) { newPts[one].getPoint(verts[i].edges[j], y); for (let k = 0; k < 3; ++k) { deltaX[k] += (pX1[k] - y[k]) / npts; } } // for all connected points // Taubin: x2 = (x1 - x0) + (x1 - x2) for (let k = 0; k < 3; ++k) { deltaX[k] = pX1[k] - pX0[k] + pX1[k] - deltaX[k]; } newPts[two].setPoint(i, ...deltaX); // smooth the vertex (x3 = x3 + cj x2) newPts[three].getPoint(i, pX3); for (let k = 0; k < 3; ++k) { xNew[k] = pX3[k] + c[iterationNumber] * deltaX[k]; } if (verts[i].type !== VertexType.VTK_FIXED_VERTEX) { newPts[three].setPoint(i, ...xNew); } } // if can move point else { // point is not allowed to move, just use the old point... // (zero out the Laplacian) newPts[one].setPoint(i, ...zerovector); newPts[two].setPoint(i, ...zerovector); } } // for all points // update the pointers. three is always three. all other pointers // shift by one and wrap. zero = (1 + zero) % 3; one = (1 + one) % 3; two = (1 + two) % 3; } // for all iterations or until converge // move the iteration count back down so that it matches the // actual number of iterations executed --iterationNumber; // set zero to three so the correct set of positions is outputted zero = three; // console.log('Performed', iterationNumber, 'smoothing passes'); // if we scaled the data down to the unit cube, then scale data back // up to the original space if (model.normalizeCoordinates) { // Re-position the coordinated const repositionedPoint = [0, 0, 0]; for (let i = 0; i < numPts; ++i) { newPts[zero].getPoint(i, repositionedPoint); for (let j = 0; j < 3; ++j) { repositionedPoint[j] = repositionedPoint[j] * inLength + inCenter[j]; } newPts[zero].setPoint(i, ...repositionedPoint); } } if (model.generateErrorScalars) { const newScalars = new Float32Array(numPts); for (let i = 0; i < numPts; ++i) { inPts.getPoint(i, x1); newPts[zero].getPoint(i, x2); newScalars[i] = Math.sqrt(Math.distance2BetweenPoints(x1, x2)); } const newScalarsArray = vtkDataArray.newInstance({ numberOfComponents: 1, values: newScalars, }); const idx = output.getPointData().addArray(newScalarsArray); output.getPointData().setActiveAttribute(idx, AttributeTypes.SCALARS); } if (model.generateErrorVectors) { const newVectors = new Float32Array(3 * numPts); for (let i = 0; i < numPts; ++i) { inPts.getPoint(i, x1); newPts[zero].getPoint(i, x2); for (let j = 0; j < 3; ++j) { newVectors[3 * i + j] = x2[j] - x1[j]; } } const newVectorsArray = vtkDataArray.newInstance({ numberOfComponents: 3, values: newVectors, }); output.getPointData().setVectors(newVectorsArray); } return newPts[zero]; }; publicAPI.requestData = (inData, outData) => { const numberOfInputs = publicAPI.getNumberOfInputPorts(); if (!numberOfInputs) { return; } const input = inData[0]; if (!input) { return; } const output = vtkPolyData.newInstance(); const outputPoints = publicAPI.vtkWindowedSincPolyDataFilterExecute( input.getPoints(), input, output ); output.setPointData(input.getPointData()); output.setCellData(input.getCellData()); output.setFieldData(input.getFieldData()); output.setPoints(outputPoints); output.setVerts(input.getVerts()); output.setLines(input.getLines()); output.setPolys(input.getPolys()); output.setStrips(input.getStrips()); outData[0] = output; }; } // ---------------------------------------------------------------------------- // Object factory // ---------------------------------------------------------------------------- const DEFAULT_VALUES = { numberOfIterations: 20, passBand: 0.1, featureAngle: 45.0, edgeAngle: 15.0, featureEdgeSmoothing: 0, boundarySmoothing: 1, nonManifoldSmoothing: 0, generateErrorScalars: 0, generateErrorVectors: 0, normalizeCoordinates: 0, }; // ---------------------------------------------------------------------------- export function extend(publicAPI, model, initialValues = {}) { Object.assign(model, DEFAULT_VALUES, initialValues); /* Make this a VTK object */ macro.obj(publicAPI, model); /* Also make it an algorithm with one input and one output */ macro.algo(publicAPI, model, 1, 1); /* Setters */ macro.setGet(publicAPI, model, [ 'numberOfIterations', 'passBand', 'featureAngle', 'edgeAngle', 'featureEdgeSmoothing', 'boundarySmoothing', 'nonManifoldSmoothing', 'generateErrorScalars', 'generateErrorVectors', 'normalizeCoordinates', ]); /* Object specific methods */ vtkWindowedSincPolyDataFilter(publicAPI, model); } // ---------------------------------------------------------------------------- export const newInstance = macro.newInstance( extend, 'vtkWindowedSincPolyDataFilter' ); // ---------------------------------------------------------------------------- export default { newInstance, extend }; |