Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | 1x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 429x 429x 429x 224x 4x 4x 4x 4x 4x 224x 296x 49x 247x 247x 247x 247x 247x 224x 268x 92x 176x 176x 176x 176x 176x 224x 224x 423x 423x 423x 423x 423x 22x 22x 22x 22x 22x 22x 423x 423x 423x 423x 224x 1x 1x 1x 224x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 224x 13x 13x 13x 13x 13x 13x 13x 224x 3x 3x 3x 3x 3x 3x 3x 224x 12x 12x 12x 12x 12x 12x 12x 12x 12x 224x 224x 15x 15x 15x 15x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 224x 3883x 3883x 3883x 3883x 3883x 3883x 224x 224x 3873x 3873x 3873x 3873x 3873x 3873x 3873x 268x 268x 268x 268x 268x 268x 268x 268x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3605x 3873x 3873x 224x 182x 182x 182x 182x 224x 6x 6x 6x 6x 6x 6x 6x 6x 6x 224x 224x 224x 193x 193x 193x 193x 193x 193x 193x 193x 193x 193x 386x 772x 1544x 1544x 1544x 193x 1x 224x 224x 224x 224x 224x 224x 224x 224x 1x | import { quat, vec3, vec4, mat4 } from 'gl-matrix'; import macro from 'vtk.js/Sources/macros'; import * as vtkMath from 'vtk.js/Sources/Common/Core/Math'; const { vtkDebugMacro } = macro; /* eslint-disable new-cap */ /* * Convenience function to access elements of a gl-matrix. If it turns * out I have rows and columns swapped everywhere, then I'll just change * the order of 'row' and 'col' parameters in this function */ // function getMatrixElement(matrix, row, col) { // const idx = (row * 4) + col; // return matrix[idx]; // } // ---------------------------------------------------------------------------- // vtkCamera methods // ---------------------------------------------------------------------------- function vtkCamera(publicAPI, model) { // Set our className model.classHierarchy.push('vtkCamera'); // Set up private variables and methods const origin = new Float64Array(3); const dopbasis = new Float64Array([0.0, 0.0, -1.0]); const upbasis = new Float64Array([0.0, 1.0, 0.0]); const tmpMatrix = mat4.identity(new Float64Array(16)); const tmpMatrix2 = mat4.identity(new Float64Array(16)); const tmpvec1 = new Float64Array(3); const tmpvec2 = new Float64Array(3); const tmpvec3 = new Float64Array(3); const rotateMatrix = mat4.identity(new Float64Array(16)); const trans = mat4.identity(new Float64Array(16)); const newPosition = new Float64Array(3); const newFocalPoint = new Float64Array(3); // Internal Functions that don't need to be public function computeViewPlaneNormal() { // VPN is -DOP model.viewPlaneNormal[0] = -model.directionOfProjection[0]; model.viewPlaneNormal[1] = -model.directionOfProjection[1]; model.viewPlaneNormal[2] = -model.directionOfProjection[2]; } publicAPI.orthogonalizeViewUp = () => { const vt = publicAPI.getViewMatrix(); model.viewUp[0] = vt[4]; model.viewUp[1] = vt[5]; model.viewUp[2] = vt[6]; publicAPI.modified(); }; publicAPI.setPosition = (x, y, z) => { if ( x === model.position[0] && y === model.position[1] && z === model.position[2] ) { return; } model.position[0] = x; model.position[1] = y; model.position[2] = z; // recompute the focal distance publicAPI.computeDistance(); publicAPI.modified(); }; publicAPI.setFocalPoint = (x, y, z) => { if ( x === model.focalPoint[0] && y === model.focalPoint[1] && z === model.focalPoint[2] ) { return; } model.focalPoint[0] = x; model.focalPoint[1] = y; model.focalPoint[2] = z; // recompute the focal distance publicAPI.computeDistance(); publicAPI.modified(); }; publicAPI.setDistance = (d) => { if (model.distance === d) { return; } model.distance = d; if (model.distance < 1e-20) { model.distance = 1e-20; vtkDebugMacro('Distance is set to minimum.'); } // we want to keep the camera pointing in the same direction const vec = model.directionOfProjection; // recalculate FocalPoint model.focalPoint[0] = model.position[0] + vec[0] * model.distance; model.focalPoint[1] = model.position[1] + vec[1] * model.distance; model.focalPoint[2] = model.position[2] + vec[2] * model.distance; publicAPI.modified(); }; //---------------------------------------------------------------------------- // This method must be called when the focal point or camera position changes publicAPI.computeDistance = () => { const dx = model.focalPoint[0] - model.position[0]; const dy = model.focalPoint[1] - model.position[1]; const dz = model.focalPoint[2] - model.position[2]; model.distance = Math.sqrt(dx * dx + dy * dy + dz * dz); if (model.distance < 1e-20) { model.distance = 1e-20; vtkDebugMacro('Distance is set to minimum.'); const vec = model.directionOfProjection; // recalculate FocalPoint model.focalPoint[0] = model.position[0] + vec[0] * model.distance; model.focalPoint[1] = model.position[1] + vec[1] * model.distance; model.focalPoint[2] = model.position[2] + vec[2] * model.distance; } model.directionOfProjection[0] = dx / model.distance; model.directionOfProjection[1] = dy / model.distance; model.directionOfProjection[2] = dz / model.distance; computeViewPlaneNormal(); }; //---------------------------------------------------------------------------- // Move the position of the camera along the view plane normal. Moving // towards the focal point (e.g., > 1) is a dolly-in, moving away // from the focal point (e.g., < 1) is a dolly-out. publicAPI.dolly = (amount) => { Iif (amount <= 0.0) { return; } // dolly moves the camera towards the focus const d = model.distance / amount; publicAPI.setPosition( model.focalPoint[0] - d * model.directionOfProjection[0], model.focalPoint[1] - d * model.directionOfProjection[1], model.focalPoint[2] - d * model.directionOfProjection[2] ); }; publicAPI.roll = (angle) => { const eye = model.position; const at = model.focalPoint; const up = model.viewUp; const viewUpVec4 = new Float64Array([up[0], up[1], up[2], 0.0]); mat4.identity(rotateMatrix); const viewDir = new Float64Array([ at[0] - eye[0], at[1] - eye[1], at[2] - eye[2], ]); mat4.rotate( rotateMatrix, rotateMatrix, vtkMath.radiansFromDegrees(angle), viewDir ); vec4.transformMat4(viewUpVec4, viewUpVec4, rotateMatrix); model.viewUp[0] = viewUpVec4[0]; model.viewUp[1] = viewUpVec4[1]; model.viewUp[2] = viewUpVec4[2]; publicAPI.modified(); }; publicAPI.azimuth = (angle) => { const fp = model.focalPoint; mat4.identity(trans); // translate the focal point to the origin, // rotate about view up, // translate back again mat4.translate(trans, trans, fp); mat4.rotate(trans, trans, vtkMath.radiansFromDegrees(angle), model.viewUp); mat4.translate(trans, trans, [-fp[0], -fp[1], -fp[2]]); // apply the transform to the position vec3.transformMat4(newPosition, model.position, trans); publicAPI.setPosition(newPosition[0], newPosition[1], newPosition[2]); }; publicAPI.yaw = (angle) => { const position = model.position; mat4.identity(trans); // translate the camera to the origin, // rotate about axis, // translate back again mat4.translate(trans, trans, position); mat4.rotate(trans, trans, vtkMath.radiansFromDegrees(angle), model.viewUp); mat4.translate(trans, trans, [-position[0], -position[1], -position[2]]); // apply the transform to the position vec3.transformMat4(newFocalPoint, model.focalPoint, trans); publicAPI.setFocalPoint( newFocalPoint[0], newFocalPoint[1], newFocalPoint[2] ); }; publicAPI.elevation = (angle) => { const fp = model.focalPoint; // get the eye / camera position from the viewMatrix const vt = publicAPI.getViewMatrix(); const axis = [-vt[0], -vt[1], -vt[2]]; mat4.identity(trans); // translate the focal point to the origin, // rotate about view up, // translate back again mat4.translate(trans, trans, fp); mat4.rotate(trans, trans, vtkMath.radiansFromDegrees(angle), axis); mat4.translate(trans, trans, [-fp[0], -fp[1], -fp[2]]); // apply the transform to the position vec3.transformMat4(newPosition, model.position, trans); publicAPI.setPosition(newPosition[0], newPosition[1], newPosition[2]); }; publicAPI.pitch = (angle) => { const position = model.position; const vt = publicAPI.getViewMatrix(); const axis = [vt[0], vt[1], vt[2]]; mat4.identity(trans); // translate the camera to the origin, // rotate about axis, // translate back again mat4.translate(trans, trans, position); mat4.rotate(trans, trans, vtkMath.radiansFromDegrees(angle), axis); mat4.translate(trans, trans, [-position[0], -position[1], -position[2]]); // apply the transform to the focal point vec3.transformMat4(newFocalPoint, model.focalPoint, trans); publicAPI.setFocalPoint(...newFocalPoint); }; publicAPI.zoom = (factor) => { Iif (factor <= 0) { return; } Iif (model.parallelProjection) { model.parallelScale /= factor; } else { model.viewAngle /= factor; } publicAPI.modified(); }; publicAPI.translate = (x, y, z) => { const offset = [x, y, z]; vtkMath.add(model.position, offset, model.position); vtkMath.add(model.focalPoint, offset, model.focalPoint); publicAPI.computeDistance(); publicAPI.modified(); }; publicAPI.applyTransform = (transformMat4) => { const vuOld = [...model.viewUp, 1.0]; const posNew = []; const fpNew = []; const vuNew = []; vuOld[0] += model.position[0]; vuOld[1] += model.position[1]; vuOld[2] += model.position[2]; vec4.transformMat4(posNew, [...model.position, 1.0], transformMat4); vec4.transformMat4(fpNew, [...model.focalPoint, 1.0], transformMat4); vec4.transformMat4(vuNew, vuOld, transformMat4); vuNew[0] -= posNew[0]; vuNew[1] -= posNew[1]; vuNew[2] -= posNew[2]; publicAPI.setPosition(...posNew.slice(0, 3)); publicAPI.setFocalPoint(...fpNew.slice(0, 3)); publicAPI.setViewUp(...vuNew.slice(0, 3)); }; publicAPI.getThickness = () => model.clippingRange[1] - model.clippingRange[0]; publicAPI.setThickness = (thickness) => { let t = thickness; if (t < 1e-20) { t = 1e-20; vtkDebugMacro('Thickness is set to minimum.'); } publicAPI.setClippingRange( model.clippingRange[0], model.clippingRange[0] + t ); }; publicAPI.setThicknessFromFocalPoint = (thickness) => { let t = thickness; if (t < 1e-20) { t = 1e-20; vtkDebugMacro('Thickness is set to minimum.'); } publicAPI.setClippingRange(model.distance - t / 2, model.distance + t / 2); }; // Unimplemented functions publicAPI.setRoll = (angle) => {}; // dependency on GetOrientation() and a model.ViewTransform object, see https://github.com/Kitware/VTK/blob/master/Common/Transforms/vtkTransform.cxx and https://vtk.org/doc/nightly/html/classvtkTransform.html publicAPI.getRoll = () => {}; publicAPI.setObliqueAngles = (alpha, beta) => {}; publicAPI.getOrientation = () => {}; publicAPI.getOrientationWXYZ = () => {}; publicAPI.getFrustumPlanes = (aspect) => { // Return array of 24 params (4 params for each of 6 plane equations) }; publicAPI.getCameraLightTransformMatrix = (matrix) => { mat4.copy(matrix, model.cameraLightTransform); return matrix; }; publicAPI.computeCameraLightTransform = () => { // not sure if this is the correct transformation, based on the same funciton in VTK mat4.copy(tmpMatrix, publicAPI.getViewMatrix()); mat4.invert(tmpMatrix, tmpMatrix); mat4.fromScaling(tmpMatrix2, [ model.distance, model.distance, model.distance, ]); mat4.multiply(tmpMatrix, tmpMatrix, tmpMatrix2); mat4.identity(model.cameraLightTransform); mat4.translate(model.cameraLightTransform, tmpMatrix, [0.0, 0.0, -1.0]); }; publicAPI.deepCopy = (sourceCamera) => {}; publicAPI.physicalOrientationToWorldDirection = (ori) => { // push the x axis through the orientation quat const oriq = quat.fromValues(ori[0], ori[1], ori[2], ori[3]); const coriq = quat.create(); const qdir = quat.fromValues(0.0, 0.0, 1.0, 0.0); quat.conjugate(coriq, oriq); // rotate the z axis by the quat quat.multiply(qdir, oriq, qdir); quat.multiply(qdir, qdir, coriq); // return the z axis in world coords return [qdir[0], qdir[1], qdir[2]]; }; publicAPI.getPhysicalToWorldMatrix = (result) => { publicAPI.getWorldToPhysicalMatrix(result); mat4.invert(result, result); }; publicAPI.getWorldToPhysicalMatrix = (result) => { mat4.identity(result); // now the physical to vtk world rotation tform const physVRight = [3]; vtkMath.cross(model.physicalViewNorth, model.physicalViewUp, physVRight); result[0] = physVRight[0]; result[1] = physVRight[1]; result[2] = physVRight[2]; result[4] = model.physicalViewUp[0]; result[5] = model.physicalViewUp[1]; result[6] = model.physicalViewUp[2]; result[8] = -model.physicalViewNorth[0]; result[9] = -model.physicalViewNorth[1]; result[10] = -model.physicalViewNorth[2]; mat4.transpose(result, result); vec3.set( tmpvec1, 1 / model.physicalScale, 1 / model.physicalScale, 1 / model.physicalScale ); mat4.scale(result, result, tmpvec1); mat4.translate(result, result, model.physicalTranslation); }; publicAPI.computeViewParametersFromViewMatrix = (vmat) => { // invert to get view to world mat4.invert(tmpMatrix, vmat); // note with glmatrix operations happen in // the reverse order // mat.scale // mat.translate // will result in the translation then the scale // mat.mult(a,b) // results in perform the B transformation then A // then extract the params position, orientation // push 0,0,0 through to get a translation vec3.transformMat4(tmpvec1, origin, tmpMatrix); publicAPI.computeDistance(); const oldDist = model.distance; publicAPI.setPosition(tmpvec1[0], tmpvec1[1], tmpvec1[2]); // push basis vectors to get orientation vec3.transformMat4(tmpvec2, dopbasis, tmpMatrix); vec3.subtract(tmpvec2, tmpvec2, tmpvec1); vec3.normalize(tmpvec2, tmpvec2); publicAPI.setDirectionOfProjection(tmpvec2[0], tmpvec2[1], tmpvec2[2]); vec3.transformMat4(tmpvec3, upbasis, tmpMatrix); vec3.subtract(tmpvec3, tmpvec3, tmpvec1); vec3.normalize(tmpvec3, tmpvec3); publicAPI.setViewUp(tmpvec3[0], tmpvec3[1], tmpvec3[2]); publicAPI.setDistance(oldDist); }; // the provided matrix should include // translation and orientation only // mat is physical to view publicAPI.computeViewParametersFromPhysicalMatrix = (mat) => { // get the WorldToPhysicalMatrix publicAPI.getWorldToPhysicalMatrix(tmpMatrix); // first convert the physical -> view matrix to be // world -> view mat4.multiply(tmpMatrix, mat, tmpMatrix); publicAPI.computeViewParametersFromViewMatrix(tmpMatrix); }; publicAPI.setViewMatrix = (mat) => { model.viewMatrix = mat; if (model.viewMatrix) { mat4.copy(tmpMatrix, model.viewMatrix); publicAPI.computeViewParametersFromViewMatrix(tmpMatrix); mat4.transpose(model.viewMatrix, model.viewMatrix); } }; publicAPI.getViewMatrix = () => { Iif (model.viewMatrix) { return model.viewMatrix; } mat4.lookAt( tmpMatrix, model.position, // eye model.focalPoint, // at model.viewUp // up ); mat4.transpose(tmpMatrix, tmpMatrix); const result = new Float64Array(16); mat4.copy(result, tmpMatrix); return result; }; publicAPI.setProjectionMatrix = (mat) => { model.projectionMatrix = mat; }; publicAPI.getProjectionMatrix = (aspect, nearz, farz) => { const result = new Float64Array(16); mat4.identity(result); Iif (model.projectionMatrix) { const scale = 1 / model.physicalScale; vec3.set(tmpvec1, scale, scale, scale); mat4.copy(result, model.projectionMatrix); mat4.scale(result, result, tmpvec1); mat4.transpose(result, result); return result; } mat4.identity(tmpMatrix); // FIXME: Not sure what to do about adjust z buffer here // adjust Z-buffer range // this->ProjectionTransform->AdjustZBuffer( -1, +1, nearz, farz ); const cWidth = model.clippingRange[1] - model.clippingRange[0]; const cRange = [ model.clippingRange[0] + ((nearz + 1) * cWidth) / 2.0, model.clippingRange[0] + ((farz + 1) * cWidth) / 2.0, ]; if (model.parallelProjection) { // set up a rectangular parallelipiped const width = model.parallelScale * aspect; const height = model.parallelScale; const xmin = (model.windowCenter[0] - 1.0) * width; const xmax = (model.windowCenter[0] + 1.0) * width; const ymin = (model.windowCenter[1] - 1.0) * height; const ymax = (model.windowCenter[1] + 1.0) * height; mat4.ortho(tmpMatrix, xmin, xmax, ymin, ymax, cRange[0], cRange[1]); mat4.transpose(tmpMatrix, tmpMatrix); } else Iif (model.useOffAxisProjection) { throw new Error('Off-Axis projection is not supported at this time'); } else { const tmp = Math.tan(vtkMath.radiansFromDegrees(model.viewAngle) / 2.0); let width; let height; Iif (model.useHorizontalViewAngle === true) { width = model.clippingRange[0] * tmp; height = (model.clippingRange[0] * tmp) / aspect; } else { width = model.clippingRange[0] * tmp * aspect; height = model.clippingRange[0] * tmp; } const xmin = (model.windowCenter[0] - 1.0) * width; const xmax = (model.windowCenter[0] + 1.0) * width; const ymin = (model.windowCenter[1] - 1.0) * height; const ymax = (model.windowCenter[1] + 1.0) * height; const znear = cRange[0]; const zfar = cRange[1]; tmpMatrix[0] = (2.0 * znear) / (xmax - xmin); tmpMatrix[5] = (2.0 * znear) / (ymax - ymin); tmpMatrix[2] = (xmin + xmax) / (xmax - xmin); tmpMatrix[6] = (ymin + ymax) / (ymax - ymin); tmpMatrix[10] = -(znear + zfar) / (zfar - znear); tmpMatrix[14] = -1.0; tmpMatrix[11] = (-2.0 * znear * zfar) / (zfar - znear); tmpMatrix[15] = 0.0; } mat4.copy(result, tmpMatrix); return result; }; publicAPI.getCompositeProjectionMatrix = (aspect, nearz, farz) => { const vMat = publicAPI.getViewMatrix(); const pMat = publicAPI.getProjectionMatrix(aspect, nearz, farz); // mats are transposed so the order is A then B // we reuse pMat as it is a copy so we can do what we want with it mat4.multiply(pMat, vMat, pMat); return pMat; }; publicAPI.setDirectionOfProjection = (x, y, z) => { Iif ( model.directionOfProjection[0] === x && model.directionOfProjection[1] === y && model.directionOfProjection[2] === z ) { return; } model.directionOfProjection[0] = x; model.directionOfProjection[1] = y; model.directionOfProjection[2] = z; const vec = model.directionOfProjection; // recalculate FocalPoint model.focalPoint[0] = model.position[0] + vec[0] * model.distance; model.focalPoint[1] = model.position[1] + vec[1] * model.distance; model.focalPoint[2] = model.position[2] + vec[2] * model.distance; computeViewPlaneNormal(); }; // used to handle convert js device orientation angles // when you use this method the camera will adjust to the // device orientation such that the physicalViewUp you set // in world coordinates looks up, and the physicalViewNorth // you set in world coorindates will (maybe) point north // // NOTE WARNING - much of the documentation out there on how // orientation works is seriously wrong. Even worse the Chrome // device orientation simulator is completely wrong and should // never be used. OMG it is so messed up. // // how it seems to work on iOS is that the device orientation // is specified in extrinsic angles with a alpha, beta, gamma // convention with axes of Z, X, Y (the code below substitutes // the physical coordinate system for these axes to get the right // modified coordinate system. publicAPI.setDeviceAngles = (alpha, beta, gamma, screen) => { const physVRight = [3]; vtkMath.cross(model.physicalViewNorth, model.physicalViewUp, physVRight); // phone to physical coordinates const rotmat = mat4.identity(new Float64Array(16)); mat4.rotate( rotmat, rotmat, vtkMath.radiansFromDegrees(alpha), model.physicalViewUp ); mat4.rotate(rotmat, rotmat, vtkMath.radiansFromDegrees(beta), physVRight); mat4.rotate( rotmat, rotmat, vtkMath.radiansFromDegrees(gamma), model.physicalViewNorth ); mat4.rotate( rotmat, rotmat, vtkMath.radiansFromDegrees(-screen), model.physicalViewUp ); const dop = new Float64Array([ -model.physicalViewUp[0], -model.physicalViewUp[1], -model.physicalViewUp[2], ]); const vup = new Float64Array(model.physicalViewNorth); vec3.transformMat4(dop, dop, rotmat); vec3.transformMat4(vup, vup, rotmat); publicAPI.setDirectionOfProjection(dop[0], dop[1], dop[2]); publicAPI.setViewUp(vup[0], vup[1], vup[2]); publicAPI.modified(); }; publicAPI.setOrientationWXYZ = (degrees, x, y, z) => { const quatMat = mat4.identity(new Float64Array(16)); if (degrees !== 0.0 && (x !== 0.0 || y !== 0.0 || z !== 0.0)) { // convert to radians const angle = vtkMath.radiansFromDegrees(degrees); const q = quat.create(); quat.setAxisAngle(q, [x, y, z], angle); mat4.fromQuat(quatMat, q); } const newdop = new Float64Array(3); vec3.transformMat4(newdop, [0.0, 0.0, -1.0], quatMat); const newvup = new Float64Array(3); vec3.transformMat4(newvup, [0.0, 1.0, 0.0], quatMat); publicAPI.setDirectionOfProjection(...newdop); publicAPI.setViewUp(...newvup); publicAPI.modified(); }; publicAPI.computeClippingRange = (bounds) => { let vn = null; let position = null; vn = model.viewPlaneNormal; position = model.position; const a = -vn[0]; const b = -vn[1]; const c = -vn[2]; const d = -(a * position[0] + b * position[1] + c * position[2]); // Set the max near clipping plane and the min far clipping plane const range = [a * bounds[0] + b * bounds[2] + c * bounds[4] + d, 1e-18]; // Find the closest / farthest bounding box vertex for (let k = 0; k < 2; k++) { for (let j = 0; j < 2; j++) { for (let i = 0; i < 2; i++) { const dist = a * bounds[i] + b * bounds[2 + j] + c * bounds[4 + k] + d; range[0] = dist < range[0] ? dist : range[0]; range[1] = dist > range[1] ? dist : range[1]; } } } return range; }; } // ---------------------------------------------------------------------------- // Object factory // ---------------------------------------------------------------------------- export const DEFAULT_VALUES = { position: [0, 0, 1], focalPoint: [0, 0, 0], viewUp: [0, 1, 0], directionOfProjection: [0, 0, -1], parallelProjection: false, useHorizontalViewAngle: false, viewAngle: 30, parallelScale: 1, clippingRange: [0.01, 1000.01], windowCenter: [0, 0], viewPlaneNormal: [0, 0, 1], useOffAxisProjection: false, screenBottomLeft: [-0.5, -0.5, -0.5], screenBottomRight: [0.5, -0.5, -0.5], screenTopRight: [0.5, 0.5, -0.5], freezeFocalPoint: false, projectionMatrix: null, viewMatrix: null, cameraLightTransform: mat4.create(), // used for world to physical transformations physicalTranslation: [0, 0, 0], physicalScale: 1.0, physicalViewUp: [0, 1, 0], physicalViewNorth: [0, 0, -1], }; // ---------------------------------------------------------------------------- export function extend(publicAPI, model, initialValues = {}) { Object.assign(model, DEFAULT_VALUES, initialValues); // Build VTK API macro.obj(publicAPI, model); macro.get(publicAPI, model, ['distance']); macro.setGet(publicAPI, model, [ 'parallelProjection', 'useHorizontalViewAngle', 'viewAngle', 'parallelScale', 'useOffAxisProjection', 'freezeFocalPoint', 'physicalScale', ]); macro.getArray(publicAPI, model, [ 'directionOfProjection', 'viewPlaneNormal', 'position', 'focalPoint', ]); macro.setGetArray(publicAPI, model, ['clippingRange', 'windowCenter'], 2); macro.setGetArray( publicAPI, model, [ 'viewUp', 'screenBottomLeft', 'screenBottomRight', 'screenTopRight', 'physicalTranslation', 'physicalViewUp', 'physicalViewNorth', ], 3 ); // Object methods vtkCamera(publicAPI, model); } // ---------------------------------------------------------------------------- export const newInstance = macro.newInstance(extend, 'vtkCamera'); // ---------------------------------------------------------------------------- export default { newInstance, extend }; |