Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | import macro from 'vtk.js/Sources/macros'; import vtkOpenGLFramebuffer from 'vtk.js/Sources/Rendering/OpenGL/Framebuffer'; import vtkRenderPass from 'vtk.js/Sources/Rendering/SceneGraph/RenderPass'; import vtkDataArray from 'vtk.js/Sources/Common/Core/DataArray'; import vtkHelper from 'vtk.js/Sources/Rendering/OpenGL/Helper'; import vtkVertexArrayObject from 'vtk.js/Sources/Rendering/OpenGL/VertexArrayObject'; import { Representation } from 'vtk.js/Sources/Rendering/Core/Property/Constants'; const { vtkErrorMacro } = macro; // ---------------------------------------------------------------------------- function vtkConvolution2DPass(publicAPI, model) { // Set our className model.classHierarchy.push('vtkConvolution2DPass'); publicAPI.computeKernelWeight = function computeKernelWeight(kernel) { const weight = kernel.reduce((prev, curr) => prev + curr); return weight <= 0 ? 1 : weight; }; // handles post-processing via convolution kernel and call delegate publicAPI.traverse = (viewNode, parent = null) => { if (model.deleted) { return; } // check if kernel dimension is valid if (model.kernelDimension % 2 !== 1) { vtkErrorMacro( 'Invalid kernel dimension! Kernel dimension must be odd (e.g. 3, 5, 7, ...).' ); return; } // if no kernel is set, use the default kernel (no post-processing) if (model.kernel === null) { model.kernel = new Float32Array(model.kernelDimension); model.kernel[Math.floor(model.kernelDimension / 2)] = 1; } const kernelLength = model.kernelDimension * model.kernelDimension; if (model.kernel.length !== kernelLength) { vtkErrorMacro( `The given kernel is invalid. 2D convolution kernels have to be 1D arrays with ${kernelLength} components representing the ${model.kernelDimension}x${model.kernelDimension} kernel in row-major form.` ); return; } // prepare framebuffer // allocate framebuffer if needed and bind it if (model.framebuffer === null) { model.framebuffer = vtkOpenGLFramebuffer.newInstance(); } const size = viewNode.getSize(); const gl = viewNode.getContext(); if (gl === null) { // nothing to do -> no render context // traverse delegate passes -> has to be done in order for the vtk render-pipeline to work correctly model.delegates.forEach((val) => { val.traverse(viewNode, publicAPI); }); return; } // prepare rendering if (model.VBOBuildTime.getMTime() < publicAPI.getMTime()) { model.tris.setOpenGLRenderWindow(viewNode); publicAPI.buildVertexBuffer(); } // store framebuffer bindings to restore them later model.framebuffer.setOpenGLRenderWindow(viewNode); model.framebuffer.saveCurrentBindingsAndBuffers(); const fbSize = model.framebuffer.getSize(); if (fbSize === null || fbSize[0] !== size[0] || fbSize[1] !== size[1]) { // create post-processing framebuffer if not already existing model.framebuffer.create(size[0], size[1]); model.framebuffer.populateFramebuffer(); } // bind framebuffer to re-direct the render-output of the delegate passes to the buffer model.framebuffer.bind(); // do the delegate rendering model.delegates.forEach((val) => { val.traverse(viewNode, publicAPI); }); // now draw the convolved values model.framebuffer.restorePreviousBindingsAndBuffers(); // check if kernel dimension has changed and convolution shader needs to be re-compiled if ( model.convolutionShader !== null && model.oldKernelDimension !== model.kernelDimension ) { model.convolutionShader = null; model.oldKernelDimension = model.kernelDimension; } // make sure the convolution shader is ready if (model.convolutionShader === null) { model.convolutionShader = viewNode .getShaderCache() .readyShaderProgramArray( [ '//VTK::System::Dec', 'attribute vec4 vertexDC;', 'attribute vec2 tcoordTC;', 'varying vec2 tcoord;', 'void main() { tcoord = tcoordTC; gl_Position = vertexDC; }', ].join('\n'), publicAPI.getFragmentShaderCode(model.kernelDimension), '' ); const program = model.convolutionShader; // prepare the vertex and triangle data for the image plane to render to model.copyVAO = vtkVertexArrayObject.newInstance(); model.copyVAO.setOpenGLRenderWindow(viewNode); model.tris.getCABO().bind(); if ( !model.copyVAO.addAttributeArray( program, model.tris.getCABO(), 'vertexDC', model.tris.getCABO().getVertexOffset(), model.tris.getCABO().getStride(), gl.FLOAT, 3, gl.FALSE ) ) { vtkErrorMacro('Error setting vertexDC in copy shader VAO.'); } if ( !model.copyVAO.addAttributeArray( program, model.tris.getCABO(), 'tcoordTC', model.tris.getCABO().getTCoordOffset(), model.tris.getCABO().getStride(), gl.FLOAT, 2, gl.FALSE ) ) { vtkErrorMacro('Error setting vertexDC in copy shader VAO.'); } } else { viewNode.getShaderCache().readyShaderProgram(model.convolutionShader); } gl.viewport(0, 0, size[0], size[1]); gl.scissor(0, 0, size[0], size[1]); // activate texture const tex = model.framebuffer.getColorTexture(); tex.activate(); model.convolutionShader.setUniformi('u_image', tex.getTextureUnit()); model.convolutionShader.setUniform2f( 'u_textureSize', tex.getWidth(), tex.getHeight() ); model.convolutionShader.setUniformfv('u_kernel', model.kernel); model.convolutionShader.setUniformf( 'u_kernelWeight', publicAPI.computeKernelWeight(model.kernel) ); // render quad gl.drawArrays(gl.TRIANGLES, 0, model.tris.getCABO().getElementCount()); tex.deactivate(); }; publicAPI.getFragmentShaderCode = (kernelDimension) => { // generate new shader code const kernelLength = kernelDimension * kernelDimension; let shaderCode = [ '//VTK::System::Dec', '//VTK::Output::Dec', 'uniform sampler2D u_image;', 'uniform vec2 u_textureSize;', `uniform float u_kernel[${kernelLength}];`, 'uniform float u_kernelWeight;', 'varying vec2 tcoord;', 'void main(){', ' vec2 onePixel = vec2(1.0, 1.0) / u_textureSize;', ' vec4 colorSum =\n', ].join('\n'); const halfDim = Math.floor(kernelDimension / 2); // generate sum per pixel let i = 0; for (let y = -halfDim; y <= halfDim; ++y) { for (let x = -halfDim; x <= halfDim; ++x) { shaderCode += ` texture2D(u_image, tcoord + onePixel * vec2(${x}, ${y})) * u_kernel[${i}]`; ++i; if (i !== kernelLength) { shaderCode += ' +\n'; } } } // finish code shaderCode += [ ';', ' gl_FragData[0] = vec4((colorSum / u_kernelWeight).rgb, texture2D(u_image, tcoord).a);', '}', ].join('\n'); return shaderCode; }; // build vertices etc publicAPI.buildVertexBuffer = () => { // 4 corner points in clipping space in order (x, y, z) where z is always set to -1 // prettier-ignore const ptsArray = new Float32Array([ -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, ]); // 4 corresponding corner points in texture space in order (x, y) const tcoordArray = new Float32Array([0, 0, 1, 0, 0, 1, 1, 1]); // a square defined as cell relation ship in order (cell_size, v1, v2, v3, v4) const cellArray = new Uint16Array([4, 0, 1, 3, 2]); const points = vtkDataArray.newInstance({ numberOfComponents: 3, values: ptsArray, }); points.setName('points'); const tcoords = vtkDataArray.newInstance({ numberOfComponents: 2, values: tcoordArray, }); tcoords.setName('tcoords'); const cells = vtkDataArray.newInstance({ numberOfComponents: 1, values: cellArray, }); model.tris.getCABO().createVBO(cells, 'polys', Representation.SURFACE, { points, tcoords, cellOffset: 0, }); model.VBOBuildTime.modified(); }; } // ---------------------------------------------------------------------------- // Object factory // ---------------------------------------------------------------------------- const DEFAULT_VALUES = { framebuffer: null, convolutionShader: null, tris: null, kernel: [0, 0, 0, 0, 1, 0, 0, 0, 0], oldKernelDimension: 3, kernelDimension: 3, }; // ---------------------------------------------------------------------------- export function extend(publicAPI, model, initialValues = {}) { Object.assign(model, DEFAULT_VALUES, initialValues); // Build VTK API vtkRenderPass.extend(publicAPI, model, initialValues); model.VBOBuildTime = {}; macro.obj(model.VBOBuildTime, { mtime: 0 }); model.tris = vtkHelper.newInstance(); macro.setGet(publicAPI, model, ['kernel', 'kernelDimension']); macro.get(publicAPI, model, ['framebuffer']); // Object methods vtkConvolution2DPass(publicAPI, model); } // ---------------------------------------------------------------------------- export const newInstance = macro.newInstance(extend, 'vtkConvolution2DPass'); // ---------------------------------------------------------------------------- export default { newInstance, extend }; |