All files / Sources/Rendering/OpenGL/ImageResliceMapper index.js

78.8% Statements 461/585
68.28% Branches 155/227
90.32% Functions 28/31
79.01% Lines 448/567

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366                                                      1x             20x 20x 20x           18x 18x 54x 18x   36x                   11x   11x 50x 25x 25x     25x   25x 25x     25x 25x 25x       11x             11x                 11x   11x 50x 25x       11x 26x 25x   1x       11x 25x 25x 25x     11x 25x 25x 25x   25x 7x 7x     18x   18x 18x 18x 18x     11x   18x 18x 18x               18x 18x 18x 18x 18x 18x       18x     11x 18x     18x 18x 18x     18x     18x 18x   18x 18x 18x     11x   11x   18x 10x       11x 18x             11x 10x   10x       10x 10x     10x 10x     10x     10x 10x   10x   10x     10x 10x 10x 10x     10x   10x     10x 10x 10x           10x 10x 10x                     10x 10x 10x 10x   10x 10x   10x   10x     10x 10x 10x 10x 10x 10x 10x   10x 10x   10x 10x 10x 10x 10x 3x 9216x 9216x     7x 21504x       10x 10x 10x                                               10x 10x 10x                           10x 10x   10x     10x     10x 10x 10x 10x 10x 10x 10x   10x 10x 10x   10x 10x 10x       10x 10x   10x 3x 3072x 3072x     7x 7168x         10x 10x 10x                                       10x 10x 10x                     10x 10x       10x       10x 10x         10x       10x 4x 4x     4x     10x         10x 10x     11x 18x     18x 10x 10x     10x                 10x 10x   10x     10x   8x         18x 18x 18x 18x     11x 18x   18x               10x 10x       10x 10x                                     10x 4x                                 10x 4x         10x 4x   10x 4x   10x 4x   10x 4x           10x 10x         10x 10x 10x 10x 10x 10x 10x 10x   10x     10x 4x     10x       18x             18x 16x 16x   16x 16x         11x     18x 18x   18x 18x       18x 18x 18x 18x                 18x                         11x 18x   18x   18x 18x               18x 18x 18x 4x 4x         18x       18x 18x 18x 18x 18x 18x           18x 18x 18x 18x   18x 18x     18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x   18x 18x   18x 18x     18x           11x             18x 18x 18x 18x 18x     18x 18x                 18x                   10x 10x 10x 10x 10x 10x 10x     8x     11x 10x 10x 10x     11x 10x 10x   10x                               10x     11x 10x 10x 10x   10x 10x 10x         10x 10x           10x 10x   10x                                   10x 3x                             3x   3x       3x                                                                     10x 4x             4x                                               10x           10x                 10x 4x                                                                             10x 3x 3x 3x         3x   3x     3x                                               7x   7x             7x                                               10x           10x 10x 10x     11x 10x 10x 10x   10x 10x   10x     10x 4x           10x         10x 10x 4x         10x         10x       10x 10x 4x         10x         10x 10x 10x       17x 17x 17x 51x 51x 51x 51x       17x     11x 18x 18x 18x   18x 18x 18x 18x 18x 1x 17x 17x 17x 17x           17x 17x   17x 17x 17x                                 18x 10x 1x 1x   1x 1x 1x     9x 9x 9x 9x 9x 9x     9x 9x 9x   9x 9x     9x 9x         9x 9x 9x 9x 9x 36x 36x 36x   9x         9x                                                                                                                           10x 10x       11x 5x                     1x                                                   11x     11x 11x         11x           11x 11x 11x 11x 11x 11x   11x     11x 11x 11x 11x 11x 11x 11x   11x     11x         1x                   1x  
import * as macro from 'vtk.js/Sources/macros';
 
import { mat4, mat3, vec3 } from 'gl-matrix';
 
import vtkClosedPolyLineToSurfaceFilter from 'vtk.js/Sources/Filters/General/ClosedPolyLineToSurfaceFilter';
import vtkCutter from 'vtk.js/Sources/Filters/Core/Cutter';
import vtkDataArray from 'vtk.js/Sources/Common/Core/DataArray';
import vtkHelper from 'vtk.js/Sources/Rendering/OpenGL/Helper';
import vtkImageDataOutlineFilter from 'vtk.js/Sources/Filters/General/ImageDataOutlineFilter';
import vtkMath from 'vtk.js/Sources/Common/Core/Math';
import vtkOpenGLTexture from 'vtk.js/Sources/Rendering/OpenGL/Texture';
import vtkPlane from 'vtk.js/Sources/Common/DataModel/Plane';
import vtkPolyData from 'vtk.js/Sources/Common/DataModel/PolyData';
import vtkReplacementShaderMapper from 'vtk.js/Sources/Rendering/OpenGL/ReplacementShaderMapper';
import vtkShaderProgram from 'vtk.js/Sources/Rendering/OpenGL/ShaderProgram';
import vtkTransform from 'vtk.js/Sources/Common/Transform/Transform';
import vtkViewNode from 'vtk.js/Sources/Rendering/SceneGraph/ViewNode';
 
import vtkImageResliceMapperVS from 'vtk.js/Sources/Rendering/OpenGL/glsl/vtkImageResliceMapperVS.glsl';
import vtkImageResliceMapperFS from 'vtk.js/Sources/Rendering/OpenGL/glsl/vtkImageResliceMapperFS.glsl';
 
import { Filter } from 'vtk.js/Sources/Rendering/OpenGL/Texture/Constants';
import { InterpolationType } from 'vtk.js/Sources/Rendering/Core/ImageProperty/Constants';
import { Representation } from 'vtk.js/Sources/Rendering/Core/Property/Constants';
import { VtkDataTypes } from 'vtk.js/Sources/Common/Core/DataArray/Constants';
import { registerOverride } from 'vtk.js/Sources/Rendering/OpenGL/ViewNodeFactory';
 
const { vtkErrorMacro } = macro;
 
// ----------------------------------------------------------------------------
// helper methods
// ----------------------------------------------------------------------------
 
function computeFnToString(property, pwfun, numberOfComponents) {
  if (pwfun) {
    const iComps = property.getIndependentComponents();
    return `${pwfun.getMTime()}-${iComps}-${numberOfComponents}`;
  }
  return '0';
}
 
function safeMatrixMultiply(matrixArray, matrixType, tmpMat) {
  matrixType.identity(tmpMat);
  return matrixArray.reduce((res, matrix, index) => {
    if (index === 0) {
      return matrix ? matrixType.copy(res, matrix) : matrixType.identity(res);
    }
    return matrix ? matrixType.multiply(res, res, matrix) : res;
  }, tmpMat);
}
 
// ----------------------------------------------------------------------------
// vtkOpenGLImageResliceMapper methods
// ----------------------------------------------------------------------------
 
function vtkOpenGLImageResliceMapper(publicAPI, model) {
  // Set our className
  model.classHierarchy.push('vtkOpenGLImageResliceMapper');
 
  publicAPI.buildPass = (prepass) => {
    if (prepass) {
      model.currentRenderPass = null;
      model._openGLImageSlice = publicAPI.getFirstAncestorOfType(
        'vtkOpenGLImageSlice'
      );
      model._openGLRenderer =
        publicAPI.getFirstAncestorOfType('vtkOpenGLRenderer');
      const ren = model._openGLRenderer.getRenderable();
      model._openGLCamera = model._openGLRenderer.getViewNodeFor(
        ren.getActiveCamera()
      );
      model._openGLRenderWindow = model._openGLRenderer.getParent();
      model.context = model._openGLRenderWindow.getContext();
      model.tris.setOpenGLRenderWindow(model._openGLRenderWindow);
    }
  };
 
  publicAPI.translucentPass = (prepass, renderPass) => {
    if (prepass) {
      model.currentRenderPass = renderPass;
      publicAPI.render();
    }
  };
 
  publicAPI.zBufferPass = (prepass) => {
    if (prepass) {
      model.haveSeenDepthRequest = true;
      model.renderDepth = true;
      publicAPI.render();
      model.renderDepth = false;
    }
  };
 
  publicAPI.opaqueZBufferPass = (prepass) => publicAPI.zBufferPass(prepass);
 
  publicAPI.opaquePass = (prepass) => {
    if (prepass) {
      publicAPI.render();
    }
  };
 
  publicAPI.getCoincidentParameters = (ren, actor) => {
    if (model.renderable.getResolveCoincidentTopology()) {
      return model.renderable.getCoincidentTopologyPolygonOffsetParameters();
    }
    return null;
  };
 
  // Renders myself
  publicAPI.render = () => {
    const actor = model._openGLImageSlice.getRenderable();
    const ren = model._openGLRenderer.getRenderable();
    publicAPI.renderPiece(ren, actor);
  };
 
  publicAPI.renderPiece = (ren, actor) => {
    publicAPI.invokeEvent({ type: 'StartEvent' });
    model.renderable.update();
    model.currentInput = model.renderable.getInputData();
 
    if (!model.currentInput) {
      vtkErrorMacro('No input!');
      return;
    }
 
    publicAPI.updateResliceGeometry();
 
    publicAPI.renderPieceStart(ren, actor);
    publicAPI.renderPieceDraw(ren, actor);
    publicAPI.renderPieceFinish(ren, actor);
    publicAPI.invokeEvent({ type: 'EndEvent' });
  };
 
  publicAPI.renderPieceStart = (ren, actor) => {
    // make sure the BOs are up to date
    publicAPI.updateBufferObjects(ren, actor);
    const iType = actor.getProperty().getInterpolationType();
    Iif (iType === InterpolationType.NEAREST) {
      model.openGLTexture.setMinificationFilter(Filter.NEAREST);
      model.openGLTexture.setMagnificationFilter(Filter.NEAREST);
      model.colorTexture.setMinificationFilter(Filter.NEAREST);
      model.colorTexture.setMagnificationFilter(Filter.NEAREST);
      model.pwfTexture.setMinificationFilter(Filter.NEAREST);
      model.pwfTexture.setMagnificationFilter(Filter.NEAREST);
    } else {
      model.openGLTexture.setMinificationFilter(Filter.LINEAR);
      model.openGLTexture.setMagnificationFilter(Filter.LINEAR);
      model.colorTexture.setMinificationFilter(Filter.LINEAR);
      model.colorTexture.setMagnificationFilter(Filter.LINEAR);
      model.pwfTexture.setMinificationFilter(Filter.LINEAR);
      model.pwfTexture.setMagnificationFilter(Filter.LINEAR);
    }
 
    // No buffer objects bound.
    model.lastBoundBO = null;
  };
 
  publicAPI.renderPieceDraw = (ren, actor) => {
    const gl = model.context;
 
    // render the texture
    model.openGLTexture.activate();
    model.colorTexture.activate();
    model.pwfTexture.activate();
 
    // update shaders if required
    publicAPI.updateShaders(model.tris, ren, actor);
 
    // Finally draw
    gl.drawArrays(gl.TRIANGLES, 0, model.tris.getCABO().getElementCount());
    model.tris.getVAO().release();
 
    model.openGLTexture.deactivate();
    model.colorTexture.deactivate();
    model.pwfTexture.deactivate();
  };
 
  publicAPI.renderPieceFinish = (ren, actor) => {};
 
  publicAPI.updateBufferObjects = (ren, actor) => {
    // Rebuild buffer objects if needed
    if (publicAPI.getNeedToRebuildBufferObjects(ren, actor)) {
      publicAPI.buildBufferObjects(ren, actor);
    }
  };
 
  publicAPI.getNeedToRebuildBufferObjects = (ren, actor) =>
    model.VBOBuildTime.getMTime() < publicAPI.getMTime() ||
    model.VBOBuildTime.getMTime() < actor.getMTime() ||
    model.VBOBuildTime.getMTime() < model.renderable.getMTime() ||
    model.VBOBuildTime.getMTime() < actor.getProperty().getMTime() ||
    model.VBOBuildTime.getMTime() < model.currentInput.getMTime() ||
    model.VBOBuildTime.getMTime() < model.resliceGeom.getMTime();
 
  publicAPI.buildBufferObjects = (ren, actor) => {
    const image = model.currentInput;
 
    Iif (!image) {
      return;
    }
 
    const scalars = image.getPointData()?.getScalars();
    Iif (!scalars) {
      return;
    }
    if (model._scalars !== scalars) {
      model._openGLRenderWindow.releaseGraphicsResourcesForObject(
        model._scalars
      );
      model._scalars = scalars;
    }
 
    const numComp = scalars.getNumberOfComponents();
    let toString = `${image.getMTime()}A${scalars.getMTime()}`;
 
    const tex = model._openGLRenderWindow.getGraphicsResourceForObject(scalars);
    const reBuildTex =
      !tex?.vtkObj ||
      tex?.hash !== toString ||
      model.openGLTextureString !== toString;
    if (reBuildTex) {
      if (!model.openGLTexture) {
        model.openGLTexture = vtkOpenGLTexture.newInstance();
        model.openGLTexture.setOpenGLRenderWindow(model._openGLRenderWindow);
      }
      // Build the image scalar texture
      const dims = image.getDimensions();
      // Use norm16 for the 3D texture if the extension is available
      model.openGLTexture.setOglNorm16Ext(
        model.context.getExtension('EXT_texture_norm16')
      );
      model.openGLTexture.releaseGraphicsResources(model._openGLRenderWindow);
      model.openGLTexture.resetFormatAndType();
      model.openGLTexture.create3DFilterableFromDataArray(
        dims[0],
        dims[1],
        dims[2],
        scalars
      );
      model.openGLTextureString = toString;
      if (scalars) {
        model._openGLRenderWindow.setGraphicsResourceForObject(
          scalars,
          model.openGLTexture,
          model.openGLTextureString
        );
      }
    } else E{
      model.openGLTexture = tex.vtkObj;
      model.openGLTextureString = tex.hash;
    }
 
    const ppty = actor.getProperty();
    const iComps = ppty.getIndependentComponents();
    const numIComps = iComps ? numComp : 1;
    const textureHeight = iComps ? 2 * numIComps : 1;
 
    const colorTransferFunc = ppty.getRGBTransferFunction();
    toString = computeFnToString(ppty, colorTransferFunc, numIComps);
    const cTex =
      model._openGLRenderWindow.getGraphicsResourceForObject(colorTransferFunc);
    const reBuildC =
      !cTex?.vtkObj ||
      cTex?.hash !== toString ||
      model.colorTextureString !== toString;
    if (reBuildC) {
      const cWidth = 1024;
      const cSize = cWidth * textureHeight * 3;
      const cTable = new Uint8ClampedArray(cSize);
      if (!model.colorTexture) {
        model.colorTexture = vtkOpenGLTexture.newInstance();
        model.colorTexture.setOpenGLRenderWindow(model._openGLRenderWindow);
      }
      if (colorTransferFunc) {
        const tmpTable = new Float32Array(cWidth * 3);
 
        for (let c = 0; c < numIComps; c++) {
          const cfun = ppty.getRGBTransferFunction(c);
          const cRange = cfun.getRange();
          cfun.getTable(cRange[0], cRange[1], cWidth, tmpTable, 1);
          if (iComps) {
            for (let i = 0; i < cWidth * 3; i++) {
              cTable[c * cWidth * 6 + i] = 255.0 * tmpTable[i];
              cTable[c * cWidth * 6 + i + cWidth * 3] = 255.0 * tmpTable[i];
            }
          } else {
            for (let i = 0; i < cWidth * 3; i++) {
              cTable[c * cWidth * 6 + i] = 255.0 * tmpTable[i];
            }
          }
        }
        model.colorTexture.releaseGraphicsResources(model._openGLRenderWindow);
        model.colorTexture.resetFormatAndType();
        model.colorTexture.create2DFromRaw(
          cWidth,
          textureHeight,
          3,
          VtkDataTypes.UNSIGNED_CHAR,
          cTable
        );
      } else E{
        for (let i = 0; i < cWidth * 3; ++i) {
          cTable[i] = (255.0 * i) / ((cWidth - 1) * 3);
          cTable[i + 1] = (255.0 * i) / ((cWidth - 1) * 3);
          cTable[i + 2] = (255.0 * i) / ((cWidth - 1) * 3);
        }
        model.colorTexture.releaseGraphicsResources(model._openGLRenderWindow);
        model.colorTexture.resetFormatAndType();
        model.colorTexture.create2DFromRaw(
          cWidth,
          1,
          3,
          VtkDataTypes.UNSIGNED_CHAR,
          cTable
        );
      }
 
      model.colorTextureString = toString;
      if (colorTransferFunc) {
        model._openGLRenderWindow.setGraphicsResourceForObject(
          colorTransferFunc,
          model.colorTexture,
          model.colorTextureString
        );
      }
    } else E{
      model.colorTexture = cTex.vtkObj;
      model.colorTextureString = cTex.hash;
    }
 
    // Build piecewise function buffer.  This buffer is used either
    // for component weighting or opacity, depending on whether we're
    // rendering components independently or not.
    const pwFunc = ppty.getPiecewiseFunction();
    toString = computeFnToString(ppty, pwFunc, numIComps);
    const pwfTex =
      model._openGLRenderWindow.getGraphicsResourceForObject(pwFunc);
    // rebuild opacity tfun?
    const reBuildPwf =
      !pwfTex?.vtkObj ||
      pwfTex?.hash !== toString ||
      model.pwfTextureString !== toString;
    if (reBuildPwf) {
      const pwfWidth = 1024;
      const pwfSize = pwfWidth * textureHeight;
      const pwfTable = new Uint8ClampedArray(pwfSize);
      if (!model.pwfTexture) {
        model.pwfTexture = vtkOpenGLTexture.newInstance();
        model.pwfTexture.setOpenGLRenderWindow(model._openGLRenderWindow);
      }
      if (pwFunc) {
        const pwfFloatTable = new Float32Array(pwfSize);
        const tmpTable = new Float32Array(pwfWidth);
 
        for (let c = 0; c < numIComps; ++c) {
          const pwfun = ppty.getPiecewiseFunction(c);
          Iif (pwfun === null) {
            // Piecewise constant max if no function supplied for this component
            pwfFloatTable.fill(1.0);
          } else {
            const pwfRange = pwfun.getRange();
            pwfun.getTable(pwfRange[0], pwfRange[1], pwfWidth, tmpTable, 1);
            // adjust for sample distance etc
            if (iComps) {
              for (let i = 0; i < pwfWidth; i++) {
                pwfFloatTable[c * pwfWidth * 2 + i] = tmpTable[i];
                pwfFloatTable[c * pwfWidth * 2 + i + pwfWidth] = tmpTable[i];
              }
            } else {
              for (let i = 0; i < pwfWidth; i++) {
                pwfFloatTable[c * pwfWidth * 2 + i] = tmpTable[i];
              }
            }
          }
        }
        model.pwfTexture.releaseGraphicsResources(model._openGLRenderWindow);
        model.pwfTexture.resetFormatAndType();
        model.pwfTexture.create2DFromRaw(
          pwfWidth,
          textureHeight,
          1,
          VtkDataTypes.FLOAT,
          pwfFloatTable
        );
      } else E{
        // default is opaque
        pwfTable.fill(255.0);
        model.pwfTexture.releaseGraphicsResources(model._openGLRenderWindow);
        model.pwfTexture.resetFormatAndType();
        model.pwfTexture.create2DFromRaw(
          pwfWidth,
          1,
          1,
          VtkDataTypes.UNSIGNED_CHAR,
          pwfTable
        );
      }
      model.pwfTextureString = toString;
      if (pwFunc) {
        model._openGLRenderWindow.setGraphicsResourceForObject(
          pwFunc,
          model.pwfTexture,
          model.pwfTextureString
        );
      }
    } else E{
      model.pwfTexture = pwfTex.vtkObj;
      model.pwfTextureString = pwfTex.hash;
    }
 
    const vboString = `${model.resliceGeom.getMTime()}A${model.renderable.getSlabThickness()}`;
    if (
      !model.tris.getCABO().getElementCount() ||
      model.VBOBuildString !== vboString
    ) {
      const points = vtkDataArray.newInstance({
        numberOfComponents: 3,
        values: model.resliceGeom.getPoints().getData(),
      });
      points.setName('points');
      const cells = vtkDataArray.newInstance({
        numberOfComponents: 1,
        values: model.resliceGeom.getPolys().getData(),
      });
 
      const options = {
        points,
        cellOffset: 0,
      };
      if (model.renderable.getSlabThickness() > 0.0) {
        const n = model.resliceGeom.getPointData().getNormals();
        Iif (!n) {
          vtkErrorMacro('Slab mode requested without normals');
        } else {
          options.normals = n;
        }
      }
      model.tris
        .getCABO()
        .createVBO(cells, 'polys', Representation.SURFACE, options);
    }
 
    model.VBOBuildString = vboString;
    model.VBOBuildTime.modified();
  };
 
  publicAPI.updateShaders = (cellBO, ren, actor) => {
    model.lastBoundBO = cellBO;
 
    // has something changed that would require us to recreate the shader?
    if (publicAPI.getNeedToRebuildShaders(cellBO, ren, actor)) {
      const shaders = { Vertex: null, Fragment: null, Geometry: null };
      publicAPI.buildShaders(shaders, ren, actor);
 
      // compile and bind the program if needed
      const newShader = model._openGLRenderWindow
        .getShaderCache()
        .readyShaderProgramArray(
          shaders.Vertex,
          shaders.Fragment,
          shaders.Geometry
        );
 
      // if the shader changed reinitialize the VAO
      if (newShader !== cellBO.getProgram()) {
        cellBO.setProgram(newShader);
        // reset the VAO as the shader has changed
        cellBO.getVAO().releaseGraphicsResources();
      }
 
      cellBO.getShaderSourceTime().modified();
    } else {
      model._openGLRenderWindow
        .getShaderCache()
        .readyShaderProgram(cellBO.getProgram());
    }
 
    cellBO.getVAO().bind();
    publicAPI.setMapperShaderParameters(cellBO, ren, actor);
    publicAPI.setCameraShaderParameters(cellBO, ren, actor);
    publicAPI.setPropertyShaderParameters(cellBO, ren, actor);
  };
 
  publicAPI.setMapperShaderParameters = (cellBO, ren, actor) => {
    const program = cellBO.getProgram();
 
    if (
      cellBO.getCABO().getElementCount() &&
      (model.VBOBuildTime.getMTime() >
        cellBO.getAttributeUpdateTime().getMTime() ||
        cellBO.getShaderSourceTime().getMTime() >
          cellBO.getAttributeUpdateTime().getMTime())
    ) {
      // Set the 3D texture
      if (program.isUniformUsed('texture1')) {
        program.setUniformi('texture1', model.openGLTexture.getTextureUnit());
      }
 
      // Set the plane vertex attributes
      if (program.isAttributeUsed('vertexWC')) {
        Iif (
          !cellBO
            .getVAO()
            .addAttributeArray(
              program,
              cellBO.getCABO(),
              'vertexWC',
              cellBO.getCABO().getVertexOffset(),
              cellBO.getCABO().getStride(),
              model.context.FLOAT,
              3,
              model.context.FALSE
            )
        ) {
          vtkErrorMacro('Error setting vertexWC in shader VAO.');
        }
      }
 
      // If we are doing slab mode, we need normals
      if (program.isAttributeUsed('normalWC')) {
        Iif (
          !cellBO
            .getVAO()
            .addAttributeArray(
              program,
              cellBO.getCABO(),
              'normalWC',
              cellBO.getCABO().getNormalOffset(),
              cellBO.getCABO().getStride(),
              model.context.FLOAT,
              3,
              model.context.FALSE
            )
        ) {
          vtkErrorMacro('Error setting normalWC in shader VAO.');
        }
      }
      if (program.isUniformUsed('slabThickness')) {
        program.setUniformf(
          'slabThickness',
          model.renderable.getSlabThickness()
        );
      }
      if (program.isUniformUsed('spacing')) {
        program.setUniform3fv('spacing', model.currentInput.getSpacing());
      }
      if (program.isUniformUsed('slabType')) {
        program.setUniformi('slabType', model.renderable.getSlabType());
      }
      if (program.isUniformUsed('slabType')) {
        program.setUniformi('slabType', model.renderable.getSlabType());
      }
      if (program.isUniformUsed('slabTrapezoid')) {
        program.setUniformi(
          'slabTrapezoid',
          model.renderable.getSlabTrapezoidIntegration()
        );
      }
 
      const shiftScaleEnabled = cellBO.getCABO().getCoordShiftAndScaleEnabled();
      const inverseShiftScaleMatrix = shiftScaleEnabled
        ? cellBO.getCABO().getInverseShiftAndScaleMatrix()
        : null;
 
      // Set the world->texture matrix
      if (program.isUniformUsed('WCTCMatrix')) {
        const image = model.currentInput;
        const dim = image.getDimensions();
        mat4.copy(model.tmpMat4, image.getIndexToWorld());
        mat4.scale(model.tmpMat4, model.tmpMat4, dim);
        mat4.invert(model.tmpMat4, model.tmpMat4);
        if (inverseShiftScaleMatrix) {
          mat4.multiply(model.tmpMat4, model.tmpMat4, inverseShiftScaleMatrix);
        }
        program.setUniformMatrix('WCTCMatrix', model.tmpMat4);
      }
 
      if (program.isUniformUsed('vboScaling')) {
        program.setUniform3fv('vboScaling', cellBO.getCABO().getCoordScale());
      }
 
      cellBO.getAttributeUpdateTime().modified();
    }
 
    // Depth request
    Iif (model.haveSeenDepthRequest) {
      cellBO
        .getProgram()
        .setUniformi('depthRequest', model.renderDepth ? 1 : 0);
    }
 
    // handle coincident
    if (cellBO.getProgram().isUniformUsed('coffset')) {
      const cp = publicAPI.getCoincidentParameters(ren, actor);
      cellBO.getProgram().setUniformf('coffset', cp.offset);
      // cfactor isn't always used when coffset is.
      if (cellBO.getProgram().isUniformUsed('cfactor')) {
        cellBO.getProgram().setUniformf('cfactor', cp.factor);
      }
    }
  };
 
  publicAPI.setCameraShaderParameters = (cellBO, ren, actor) => {
    // [WMVP]C == {world, model, view, projection} coordinates
    // e.g. WCPC == world to projection coordinate transformation
    const keyMats = model._openGLCamera.getKeyMatrices(ren);
    const actMats = model._openGLImageSlice.getKeyMatrices();
 
    const shiftScaleEnabled = cellBO.getCABO().getCoordShiftAndScaleEnabled();
    const inverseShiftScaleMatrix = shiftScaleEnabled
      ? cellBO.getCABO().getInverseShiftAndScaleMatrix()
      : null;
 
    const program = cellBO.getProgram();
    if (program.isUniformUsed('MCPCMatrix')) {
      mat4.identity(model.tmpMat4);
      program.setUniformMatrix(
        'MCPCMatrix',
        safeMatrixMultiply(
          [keyMats.wcpc, actMats.mcwc, inverseShiftScaleMatrix],
          mat4,
          model.tmpMat4
        )
      );
    }
    Iif (program.isUniformUsed('MCVCMatrix')) {
      mat4.identity(model.tmpMat4);
      program.setUniformMatrix(
        'MCVCMatrix',
        safeMatrixMultiply(
          [keyMats.wcvc, actMats.mcwc, inverseShiftScaleMatrix],
          mat4,
          model.tmpMat4
        )
      );
    }
  };
 
  publicAPI.setPropertyShaderParameters = (cellBO, ren, actor) => {
    const program = cellBO.getProgram();
 
    const ppty = actor.getProperty();
 
    const opacity = ppty.getOpacity();
    program.setUniformf('opacity', opacity);
 
    // Component mix
    // Independent components: Mixed according to component weights
    // Dependent components: Mixed using the following logic:
    //    - 2 comps => LA
    //    - 3 comps => RGB + opacity from pwf
    //    - 4 comps => RGBA
    const numComp = model.openGLTexture.getComponents();
    const iComps = ppty.getIndependentComponents();
    if (iComps) {
      for (let i = 0; i < numComp; ++i) {
        program.setUniformf(`mix${i}`, ppty.getComponentWeight(i));
      }
    }
 
    // Color opacity map
    const volInfo = model.openGLTexture.getVolumeInfo();
 
    // three levels of shift scale combined into one
    // for performance in the fragment shader
    for (let i = 0; i < numComp; i++) {
      let cw = ppty.getColorWindow();
      let cl = ppty.getColorLevel();
      const target = iComps ? i : 0;
      const cfun = ppty.getRGBTransferFunction(target);
      Iif (cfun && ppty.getUseLookupTableScalarRange()) {
        const cRange = cfun.getRange();
        cw = cRange[1] - cRange[0];
        cl = 0.5 * (cRange[1] + cRange[0]);
      }
 
      const scale = volInfo.scale[i] / cw;
      const shift = (volInfo.offset[i] - cl) / cw + 0.5;
      program.setUniformf(`cshift${i}`, shift);
      program.setUniformf(`cscale${i}`, scale);
    }
    const texColorUnit = model.colorTexture.getTextureUnit();
    program.setUniformi('colorTexture1', texColorUnit);
 
    // pwf shift/scale
    for (let i = 0; i < numComp; i++) {
      let pwfScale = 1.0;
      let pwfShift = 0.0;
      const target = iComps ? i : 0;
      const pwfun = ppty.getPiecewiseFunction(target);
      if (pwfun) {
        const pwfRange = pwfun.getRange();
        const length = pwfRange[1] - pwfRange[0];
        const mid = 0.5 * (pwfRange[0] + pwfRange[1]);
        pwfScale = volInfo.scale[i] / length;
        pwfShift = (volInfo.offset[i] - mid) / length + 0.5;
      }
      program.setUniformf(`pwfshift${i}`, pwfShift);
      program.setUniformf(`pwfscale${i}`, pwfScale);
    }
    const texOpacityUnit = model.pwfTexture.getTextureUnit();
    program.setUniformi('pwfTexture1', texOpacityUnit);
 
    // Background color
    program.setUniform4fv(
      'backgroundColor',
      model.renderable.getBackgroundColor()
    );
  };
 
  publicAPI.getNeedToRebuildShaders = (cellBO, ren, actor) => {
    // has something changed that would require us to recreate the shader?
    // candidates are
    // property modified (representation interpolation and lighting)
    // input modified
    // light complexity changed
    // render pass shader replacement changed
    const tNumComp = model.openGLTexture.getComponents();
    const iComp = actor.getProperty().getIndependentComponents();
    const slabTh = model.renderable.getSlabThickness();
    const slabType = model.renderable.getSlabType();
    const slabTrap = model.renderable.getSlabTrapezoidIntegration();
 
    // has the render pass shader replacement changed? Two options
    let needRebuild = false;
    Iif (
      (!model.currentRenderPass && model.lastRenderPassShaderReplacement) ||
      (model.currentRenderPass &&
        model.currentRenderPass.getShaderReplacement() !==
          model.lastRenderPassShaderReplacement)
    ) {
      needRebuild = true;
    }
 
    if (
      needRebuild ||
      model.lastHaveSeenDepthRequest !== model.haveSeenDepthRequest ||
      cellBO.getProgram()?.getHandle() === 0 ||
      model.lastTextureComponents !== tNumComp ||
      model.lastIndependentComponents !== iComp ||
      model.lastSlabThickness !== slabTh ||
      model.lastSlabType !== slabType ||
      model.lastSlabTrapezoidIntegration !== slabTrap
    ) {
      model.lastHaveSeenDepthRequest = model.haveSeenDepthRequest;
      model.lastTextureComponents = tNumComp;
      model.lastIndependentComponents = iComp;
      model.lastSlabThickness = slabTh;
      model.lastSlabType = slabType;
      model.lastSlabTrapezoidIntegration = slabTrap;
      return true;
    }
 
    return false;
  };
 
  publicAPI.getShaderTemplate = (shaders, ren, actor) => {
    shaders.Vertex = vtkImageResliceMapperVS;
    shaders.Fragment = vtkImageResliceMapperFS;
    shaders.Geometry = '';
  };
 
  publicAPI.replaceShaderValues = (shaders, ren, actor) => {
    publicAPI.replaceShaderTCoord(shaders, ren, actor);
    publicAPI.replaceShaderPositionVC(shaders, ren, actor);
 
    Iif (model.haveSeenDepthRequest) {
      let FSSource = shaders.Fragment;
      FSSource = vtkShaderProgram.substitute(
        FSSource,
        '//VTK::ZBuffer::Dec',
        'uniform int depthRequest;'
      ).result;
      FSSource = vtkShaderProgram.substitute(FSSource, '//VTK::ZBuffer::Impl', [
        'if (depthRequest == 1) {',
        'float iz = floor(gl_FragCoord.z*65535.0 + 0.1);',
        'float rf = floor(iz/256.0)/255.0;',
        'float gf = mod(iz,256.0)/255.0;',
        'gl_FragData[0] = vec4(rf, gf, 0.0, 1.0); }',
      ]).result;
      shaders.Fragment = FSSource;
    }
    publicAPI.replaceShaderCoincidentOffset(shaders, ren, actor);
  };
 
  publicAPI.replaceShaderTCoord = (shaders, ren, actor) => {
    let VSSource = shaders.Vertex;
    const GSSource = shaders.Geometry;
    let FSSource = shaders.Fragment;
 
    const tcoordVSDec = ['uniform mat4 WCTCMatrix;', 'out vec3 fragTexCoord;'];
    const slabThickness = model.renderable.getSlabThickness();
    VSSource = vtkShaderProgram.substitute(
      VSSource,
      '//VTK::TCoord::Dec',
      tcoordVSDec
    ).result;
    const tcoordVSImpl = ['fragTexCoord = (WCTCMatrix * vertexWC).xyz;'];
    VSSource = vtkShaderProgram.substitute(
      VSSource,
      '//VTK::TCoord::Impl',
      tcoordVSImpl
    ).result;
 
    const tNumComp = model.openGLTexture.getComponents();
    const iComps = actor.getProperty().getIndependentComponents();
 
    let tcoordFSDec = [
      'in vec3 fragTexCoord;',
      'uniform highp sampler3D texture1;',
      'uniform mat4 WCTCMatrix;',
      // color shift and scale
      'uniform float cshift0;',
      'uniform float cscale0;',
      // pwf shift and scale
      'uniform float pwfshift0;',
      'uniform float pwfscale0;',
      // color and pwf textures
      'uniform sampler2D colorTexture1;',
      'uniform sampler2D pwfTexture1;',
      // opacity
      'uniform float opacity;',
      // background color
      'uniform vec4 backgroundColor;',
    ];
    if (iComps) {
      for (let comp = 1; comp < tNumComp; comp++) {
        tcoordFSDec = tcoordFSDec.concat([
          // color shift and scale
          `uniform float cshift${comp};`,
          `uniform float cscale${comp};`,
          // weighting shift and scale
          `uniform float pwfshift${comp};`,
          `uniform float pwfscale${comp};`,
        ]);
      }
      // the heights defined below are the locations
      // for the up to four components of the tfuns
      // the tfuns have a height of 2XnumComps pixels so the
      // values are computed to hit the middle of the two rows
      // for that component
      switch (tNumComp) {
        case 1:
          tcoordFSDec = tcoordFSDec.concat([
            'uniform float mix0;',
            '#define height0 0.5',
          ]);
          break;
        case 2:
          tcoordFSDec = tcoordFSDec.concat([
            'uniform float mix0;',
            'uniform float mix1;',
            '#define height0 0.25',
            '#define height1 0.75',
          ]);
          break;
        case 3:
          tcoordFSDec = tcoordFSDec.concat([
            'uniform float mix0;',
            'uniform float mix1;',
            'uniform float mix2;',
            '#define height0 0.17',
            '#define height1 0.5',
            '#define height2 0.83',
          ]);
          break;
        case 4:
          tcoordFSDec = tcoordFSDec.concat([
            'uniform float mix0;',
            'uniform float mix1;',
            'uniform float mix2;',
            'uniform float mix3;',
            '#define height0 0.125',
            '#define height1 0.375',
            '#define height2 0.625',
            '#define height3 0.875',
          ]);
          break;
        default:
          vtkErrorMacro('Unsupported number of independent coordinates.');
      }
    }
    if (slabThickness > 0.0) {
      tcoordFSDec = tcoordFSDec.concat([
        'uniform vec3 spacing;',
        'uniform float slabThickness;',
        'uniform int slabType;',
        'uniform int slabTrapezoid;',
        'uniform vec3 vboScaling;',
      ]);
      tcoordFSDec = tcoordFSDec.concat([
        'vec4 compositeValue(vec4 currVal, vec4 valToComp, int trapezoid)',
        '{',
        '  vec4 retVal = vec4(1.0);',
        '  if (slabType == 0) // min',
        '  {',
        '    retVal = min(currVal, valToComp);',
        '  }',
        '  else if (slabType == 1) // max',
        '  {',
        '    retVal = max(currVal, valToComp);',
        '  }',
        '  else if (slabType == 3) // sum',
        '  {',
        '    retVal = currVal + (trapezoid > 0 ? 0.5 * valToComp : valToComp); ',
        '  }',
        '  else // mean',
        '  {',
        '    retVal = currVal + (trapezoid > 0 ? 0.5 * valToComp : valToComp); ',
        '  }',
        '  return retVal;',
        '}',
      ]);
    }
    FSSource = vtkShaderProgram.substitute(
      FSSource,
      '//VTK::TCoord::Dec',
      tcoordFSDec
    ).result;
 
    let tcoordFSImpl = [
      'if (any(greaterThan(fragTexCoord, vec3(1.0))) || any(lessThan(fragTexCoord, vec3(0.0))))',
      '{',
      '  // set the background color and exit',
      '  gl_FragData[0] = backgroundColor;',
      '  return;',
      '}',
      'vec4 tvalue = texture(texture1, fragTexCoord);',
    ];
    if (slabThickness > 0.0) {
      tcoordFSImpl = tcoordFSImpl.concat([
        '// Get the first and last samples',
        'int numSlices = 1;',
        'float scaling = min(min(spacing.x, spacing.y), spacing.z) * 0.5;',
        'vec3 normalxspacing = scaling * normalWCVSOutput;',
        'float distTraveled = length(normalxspacing);',
        'int trapezoid = 0;',
        'while (distTraveled < slabThickness * 0.5)',
        '{',
        '  distTraveled += length(normalxspacing);',
        '  float fnumSlices = float(numSlices);',
        '  if (distTraveled > slabThickness * 0.5)',
        '  {',
        '    // Before stepping outside the slab, sample at the boundaries',
        '    normalxspacing = normalWCVSOutput * slabThickness * 0.5 / fnumSlices;',
        '    trapezoid = slabTrapezoid;',
        '  }',
        '  vec3 fragTCoordNeg = (WCTCMatrix * vec4(vertexWCVSOutput.xyz - fnumSlices * normalxspacing * vboScaling, 1.0)).xyz;',
        '  if (!any(greaterThan(fragTCoordNeg, vec3(1.0))) && !any(lessThan(fragTCoordNeg, vec3(0.0))))',
        '  {',
        '    vec4 newVal = texture(texture1, fragTCoordNeg);',
        '    tvalue = compositeValue(tvalue, newVal, trapezoid);',
        '    numSlices += 1;',
        '  }',
        '  vec3 fragTCoordPos = (WCTCMatrix * vec4(vertexWCVSOutput.xyz + fnumSlices * normalxspacing * vboScaling, 1.0)).xyz;',
        '  if (!any(greaterThan(fragTCoordNeg, vec3(1.0))) && !any(lessThan(fragTCoordNeg, vec3(0.0))))',
        '  {',
        '    vec4 newVal = texture(texture1, fragTCoordPos);',
        '    tvalue = compositeValue(tvalue, newVal, trapezoid);',
        '    numSlices += 1;',
        '  }',
        '}',
        '// Finally, if slab type is *mean*, divide the sum by the numSlices',
        'if (slabType == 2)',
        '{',
        '  tvalue = tvalue / float(numSlices);',
        '}',
      ]);
    }
    if (iComps) {
      const rgba = ['r', 'g', 'b', 'a'];
      for (let comp = 0; comp < tNumComp; ++comp) {
        tcoordFSImpl = tcoordFSImpl.concat([
          `vec3 tcolor${comp} = mix${comp} * texture2D(colorTexture1, vec2(tvalue.${rgba[comp]} * cscale${comp} + cshift${comp}, height${comp})).rgb;`,
          `float compWeight${comp} = mix${comp} * texture2D(pwfTexture1, vec2(tvalue.${rgba[comp]} * pwfscale${comp} + pwfshift${comp}, height${comp})).r;`,
        ]);
      }
      switch (tNumComp) {
        case 1:
          tcoordFSImpl = tcoordFSImpl.concat([
            'gl_FragData[0] = vec4(tcolor0.rgb, compWeight0 * opacity);',
          ]);
          break;
        case 2:
          tcoordFSImpl = tcoordFSImpl.concat([
            'float weightSum = compWeight0 + compWeight1;',
            'gl_FragData[0] = vec4(vec3((tcolor0.rgb * (compWeight0 / weightSum)) + (tcolor1.rgb * (compWeight1 / weightSum))), opacity);',
          ]);
          break;
        case 3:
          tcoordFSImpl = tcoordFSImpl.concat([
            'float weightSum = compWeight0 + compWeight1 + compWeight2;',
            'gl_FragData[0] = vec4(vec3((tcolor0.rgb * (compWeight0 / weightSum)) + (tcolor1.rgb * (compWeight1 / weightSum)) + (tcolor2.rgb * (compWeight2 / weightSum))), opacity);',
          ]);
          break;
        case 4:
          tcoordFSImpl = tcoordFSImpl.concat([
            'float weightSum = compWeight0 + compWeight1 + compWeight2 + compWeight3;',
            'gl_FragData[0] = vec4(vec3((tcolor0.rgb * (compWeight0 / weightSum)) + (tcolor1.rgb * (compWeight1 / weightSum)) + (tcolor2.rgb * (compWeight2 / weightSum)) + (tcolor3.rgb * (compWeight3 / weightSum))), opacity);',
          ]);
          break;
        default:
          vtkErrorMacro('Unsupported number of independent coordinates.');
      }
    } else {
      // dependent components
      switch (tNumComp) {
        case 1:
          tcoordFSImpl = tcoordFSImpl.concat([
            '// Dependent components',
            'float intensity = tvalue.r;',
            'vec3 tcolor = texture2D(colorTexture1, vec2(intensity * cscale0 + cshift0, 0.5)).rgb;',
            'float scalarOpacity = texture2D(pwfTexture1, vec2(intensity * pwfscale0 + pwfshift0, 0.5)).r;',
            'gl_FragData[0] = vec4(tcolor, scalarOpacity * opacity);',
          ]);
          break;
        case 2:
          tcoordFSImpl = tcoordFSImpl.concat([
            'float intensity = tvalue.r*cscale0 + cshift0;',
            'gl_FragData[0] = vec4(texture2D(colorTexture1, vec2(intensity, 0.5)).rgb, pwfscale0*tvalue.g + pwfshift0);',
          ]);
          break;
        case 3:
          tcoordFSImpl = tcoordFSImpl.concat([
            'vec4 tcolor = cscale0*tvalue + cshift0;',
            'gl_FragData[0] = vec4(texture2D(colorTexture1, vec2(tcolor.r,0.5)).r,',
            '  texture2D(colorTexture1, vec2(tcolor.g,0.5)).r,',
            '  texture2D(colorTexture1, vec2(tcolor.b,0.5)).r, opacity);',
          ]);
          break;
        default:
          tcoordFSImpl = tcoordFSImpl.concat([
            'vec4 tcolor = cscale0*tvalue + cshift0;',
            'gl_FragData[0] = vec4(texture2D(colorTexture1, vec2(tcolor.r,0.5)).r,',
            '  texture2D(colorTexture1, vec2(tcolor.g,0.5)).r,',
            '  texture2D(colorTexture1, vec2(tcolor.b,0.5)).r, tcolor.a);',
          ]);
      }
    }
    FSSource = vtkShaderProgram.substitute(
      FSSource,
      '//VTK::TCoord::Impl',
      tcoordFSImpl
    ).result;
 
    shaders.Vertex = VSSource;
    shaders.Fragment = FSSource;
    shaders.Geometry = GSSource;
  };
 
  publicAPI.replaceShaderPositionVC = (shaders, ren, actor) => {
    let VSSource = shaders.Vertex;
    const GSSource = shaders.Geometry;
    let FSSource = shaders.Fragment;
 
    const slabThickness = model.renderable.getSlabThickness();
    let posVCVSDec = ['attribute vec4 vertexWC;'];
    // Add a unique hash to the shader to ensure that the shader program is unique to this mapper.
    posVCVSDec = posVCVSDec.concat([
      `//${publicAPI.getMTime()}${model.resliceGeomUpdateString}`,
    ]);
    if (slabThickness > 0.0) {
      posVCVSDec = posVCVSDec.concat([
        'attribute vec3 normalWC;',
        'varying vec3 normalWCVSOutput;',
        'varying vec4 vertexWCVSOutput;',
      ]);
    }
    VSSource = vtkShaderProgram.substitute(
      VSSource,
      '//VTK::PositionVC::Dec',
      posVCVSDec
    ).result;
    let posVCVSImpl = ['gl_Position = MCPCMatrix * vertexWC;'];
    if (slabThickness > 0.0) {
      posVCVSImpl = posVCVSImpl.concat([
        'normalWCVSOutput = normalWC;',
        'vertexWCVSOutput = vertexWC;',
      ]);
    }
    VSSource = vtkShaderProgram.substitute(
      VSSource,
      '//VTK::PositionVC::Impl',
      posVCVSImpl
    ).result;
    VSSource = vtkShaderProgram.substitute(VSSource, '//VTK::Camera::Dec', [
      'uniform mat4 MCPCMatrix;',
      'uniform mat4 MCVCMatrix;',
    ]).result;
    let posVCFSDec = [];
    if (slabThickness > 0.0) {
      posVCFSDec = posVCFSDec.concat([
        'varying vec3 normalWCVSOutput;',
        'varying vec4 vertexWCVSOutput;',
      ]);
    }
    FSSource = vtkShaderProgram.substitute(
      FSSource,
      '//VTK::PositionVC::Dec',
      posVCFSDec
    ).result;
    shaders.Vertex = VSSource;
    shaders.Geometry = GSSource;
    shaders.Fragment = FSSource;
  };
 
  function isVectorAxisAligned(n) {
    vtkMath.normalize(n);
    const tmpN = [0, 0, 0];
    for (let i = 0; i < 3; ++i) {
      vec3.zero(tmpN);
      tmpN[i] = 1.0;
      const dotP = vtkMath.dot(n, tmpN);
      Iif (dotP < -0.999 || dotP > 0.999) {
        return [true, i];
      }
    }
    return [false, 2];
  }
 
  publicAPI.updateResliceGeometry = () => {
    let resGeomString = '';
    const image = model.currentInput;
    const imageBounds = image?.getBounds();
    // Orthogonal slicing by default
    let orthoSlicing = true;
    let orthoAxis = 2;
    const slicePD = model.renderable.getSlicePolyData();
    const slicePlane = model.renderable.getSlicePlane();
    if (slicePD) {
      resGeomString = resGeomString.concat(`PolyData${slicePD.getMTime()}`);
    } else if (slicePlane) {
      resGeomString = resGeomString.concat(`Plane${slicePlane.getMTime()}`);
      if (image) {
        resGeomString = resGeomString.concat(`Image${image.getMTime()}`);
      }
      // Check to see if we can bypass oblique slicing related bounds computation
      // Compute a world-to-image-orientation matrix.
      // Ignore the translation component since we are
      // using it on vectors rather than positions.
      const w2io = mat3.fromValues(image?.getDirection());
      mat3.invert(w2io, w2io);
      // transform the cutting plane normal to image local coords
      const imageLocalNormal = [...slicePlane.getNormal()];
      vec3.transformMat3(imageLocalNormal, imageLocalNormal, w2io);
      [orthoSlicing, orthoAxis] = isVectorAxisAligned(imageLocalNormal);
    } else E{
      // Create a default slice plane here
      const plane = vtkPlane.newInstance();
      plane.setNormal(0, 0, 1);
      let bds = [0, 1, 0, 1, 0, 1];
      if (image) {
        bds = imageBounds;
      }
      plane.setOrigin(bds[0], bds[2], 0.5 * (bds[5] + bds[4]));
      model.renderable.setSlicePlane(plane);
      resGeomString = resGeomString.concat(`Plane${slicePlane?.getMTime()}`);
      if (image) {
        resGeomString = resGeomString.concat(`Image${image.getMTime()}`);
      }
    }
 
    if (!model.resliceGeom || model.resliceGeomUpdateString !== resGeomString) {
      if (slicePD) {
        if (!model.resliceGeom) {
          model.resliceGeom = vtkPolyData.newInstance();
        }
        model.resliceGeom.getPoints().setData(slicePD.getPoints().getData(), 3);
        model.resliceGeom.getPolys().setData(slicePD.getPolys().getData(), 1);
        model.resliceGeom
          .getPointData()
          .setNormals(slicePD.getPointData().getNormals());
      } else if (slicePlane) {
        if (!orthoSlicing) {
          model.outlineFilter.setInputData(image);
          model.cutter.setInputConnection(model.outlineFilter.getOutputPort());
          model.cutter.setCutFunction(slicePlane);
          model.lineToSurfaceFilter.setInputConnection(
            model.cutter.getOutputPort()
          );
          model.lineToSurfaceFilter.update();
          if (!model.resliceGeom) {
            model.resliceGeom = vtkPolyData.newInstance();
          }
          const planePD = model.lineToSurfaceFilter.getOutputData();
          model.resliceGeom
            .getPoints()
            .setData(planePD.getPoints().getData(), 3);
          model.resliceGeom.getPolys().setData(planePD.getPolys().getData(), 1);
          model.resliceGeom
            .getPointData()
            .setNormals(planePD.getPointData().getNormals());
          // The above method does not generate point normals
          // Set it manually here.
          const n = slicePlane.getNormal();
          const npts = model.resliceGeom.getNumberOfPoints();
          vtkMath.normalize(n);
          const normalsData = new Float32Array(npts * 3);
          for (let i = 0; i < npts; ++i) {
            normalsData[3 * i] = n[0];
            normalsData[3 * i + 1] = n[1];
            normalsData[3 * i + 2] = n[2];
          }
          const normals = vtkDataArray.newInstance({
            numberOfComponents: 3,
            values: normalsData,
            name: 'Normals',
          });
          model.resliceGeom.getPointData().setNormals(normals);
        } else E{
          // Since the image-local normal is axis-aligned, we
          // can quickly construct the cutting plane using indexToWorld transforms.
          const ptsArray = new Float32Array(12);
          const indexSpacePlaneOrigin = image.worldToIndex(
            slicePlane.getOrigin(),
            [0, 0, 0]
          );
          const otherAxes = [(orthoAxis + 1) % 3, (orthoAxis + 2) % 3].sort();
          const dim = image.getDimensions();
          const ext = [0, dim[0] - 1, 0, dim[1] - 1, 0, dim[2] - 1];
          let ptIdx = 0;
          for (let i = 0; i < 2; ++i) {
            for (let j = 0; j < 2; ++j) {
              ptsArray[ptIdx + orthoAxis] = indexSpacePlaneOrigin[orthoAxis];
              ptsArray[ptIdx + otherAxes[0]] = ext[2 * otherAxes[0] + j];
              ptsArray[ptIdx + otherAxes[1]] = ext[2 * otherAxes[1] + i];
              ptIdx += 3;
            }
          }
          model.transform.setMatrix(image.getIndexToWorld());
          model.transform.transformPoints(ptsArray, ptsArray);
 
          const cellArray = new Uint16Array(8);
          cellArray[0] = 3;
          cellArray[1] = 0;
          cellArray[2] = 1;
          cellArray[3] = 3;
          cellArray[4] = 3;
          cellArray[5] = 0;
          cellArray[6] = 3;
          cellArray[7] = 2;
 
          const n = slicePlane.getNormal();
          vtkMath.normalize(n);
          const normalsData = new Float32Array(12);
          for (let i = 0; i < 4; ++i) {
            normalsData[3 * i] = n[0];
            normalsData[3 * i + 1] = n[1];
            normalsData[3 * i + 2] = n[2];
          }
 
          if (!model.resliceGeom) {
            model.resliceGeom = vtkPolyData.newInstance();
          }
          model.resliceGeom.getPoints().setData(ptsArray, 3);
          model.resliceGeom.getPolys().setData(cellArray, 1);
          const normals = vtkDataArray.newInstance({
            numberOfComponents: 3,
            values: normalsData,
            name: 'Normals',
          });
          model.resliceGeom.getPointData().setNormals(normals);
        }
      } else E{
        vtkErrorMacro(
          'Something went wrong.',
          'A default slice plane should have been created in the beginning of',
          'updateResliceGeometry.'
        );
      }
      model.resliceGeomUpdateString = resGeomString;
      model.resliceGeom?.modified();
    }
  };
 
  publicAPI.setOpenGLTexture = (oglTex) => {
    Iif (oglTex) {
      model.openGLTexture = oglTex;
      model._externalOpenGLTexture = true;
    }
  };
}
 
// ----------------------------------------------------------------------------
// Object factory
// ----------------------------------------------------------------------------
 
const DEFAULT_VALUES = {
  VBOBuildTime: {},
  VBOBuildString: null,
  haveSeenDepthRequest: false,
  lastHaveSeenDepthRequest: false,
  lastIndependentComponents: false,
  lastTextureComponents: 0,
  lastSlabThickness: 0,
  lastSlabTrapezoidIntegration: 0,
  lastSlabType: -1,
  openGLTexture: null,
  openGLTextureString: null,
  colorTextureString: null,
  pwfTextureString: null,
  resliceGeom: null,
  resliceGeomUpdateString: null,
  tris: null,
  colorTexture: null,
  pwfTexture: null,
  _externalOpenGLTexture: false,
  _scalars: null,
};
 
// ----------------------------------------------------------------------------
 
export function extend(publicAPI, model, initialValues = {}) {
  Object.assign(model, DEFAULT_VALUES, initialValues);
 
  // Inheritance
  vtkViewNode.extend(publicAPI, model, initialValues);
  vtkReplacementShaderMapper.implementReplaceShaderCoincidentOffset(
    publicAPI,
    model,
    initialValues
  );
  vtkReplacementShaderMapper.implementBuildShadersWithReplacements(
    publicAPI,
    model,
    initialValues
  );
 
  model.tris = vtkHelper.newInstance();
  model.openGLTexture = null;
  model.colorTexture = null;
  model.pwfTexture = null;
  model.VBOBuildTime = {};
  macro.obj(model.VBOBuildTime);
 
  model.tmpMat4 = mat4.identity(new Float64Array(16));
 
  // Implicit plane to polydata related cache:
  model.outlineFilter = vtkImageDataOutlineFilter.newInstance();
  model.outlineFilter.setGenerateFaces(true);
  model.outlineFilter.setGenerateLines(false);
  model.cubePolyData = vtkPolyData.newInstance();
  model.cutter = vtkCutter.newInstance();
  model.lineToSurfaceFilter = vtkClosedPolyLineToSurfaceFilter.newInstance();
  model.transform = vtkTransform.newInstance();
 
  macro.get(publicAPI, model, ['openGLTexture']);
 
  // Object methods
  vtkOpenGLImageResliceMapper(publicAPI, model);
}
 
// ----------------------------------------------------------------------------
 
export const newInstance = macro.newInstance(
  extend,
  'vtkOpenGLImageResliceMapper'
);
 
// ----------------------------------------------------------------------------
 
export default { newInstance, extend };
 
// Register ourself to OpenGL backend if imported
registerOverride('vtkImageResliceMapper', newInstance);