All files / Sources/Rendering/WebGPU/SphereMapper index.js

4.51% Statements 6/133
0% Branches 0/35
0% Functions 0/7
4.68% Lines 6/128

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334                1x 1x   1x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1x                                           1x             1x  
import * as macro from 'vtk.js/Sources/macros';
import * as vtkMath from 'vtk.js/Sources/Common/Core/Math';
import vtkWebGPUCellArrayMapper from 'vtk.js/Sources/Rendering/WebGPU/CellArrayMapper';
import vtkWebGPUBufferManager from 'vtk.js/Sources/Rendering/WebGPU/BufferManager';
import vtkWebGPUShaderCache from 'vtk.js/Sources/Rendering/WebGPU/ShaderCache';
 
import { registerOverride } from 'vtk.js/Sources/Rendering/WebGPU/ViewNodeFactory';
 
const { BufferUsage } = vtkWebGPUBufferManager;
const { vtkErrorMacro } = macro;
 
const vtkWebGPUSphereMapperVS = `
//VTK::Renderer::Dec
 
//VTK::Mapper::Dec
 
//VTK::Color::Dec
 
//VTK::IOStructs::Dec
 
@vertex
fn main(
//VTK::IOStructs::Input
)
//VTK::IOStructs::Output
{
  var output : vertexOutput;
 
  var vertexVC: vec4<f32> = rendererUBO.SCVCMatrix * mapperUBO.BCSCMatrix * vec4<f32>(vertexBC.xyz, 1.0);
 
  //VTK::Color::Impl
 
  // compute the projected vertex position
  output.centerVC = vertexVC.xyz;
  output.radiusVC = length(offsetMC)*0.5;
 
  // make the triangle face the camera
  if (rendererUBO.cameraParallel == 0u)
    {
    var dir: vec3<f32> = normalize(-vertexVC.xyz);
    var base2: vec3<f32> = normalize(cross(dir,vec3<f32>(1.0,0.0,0.0)));
    var base1: vec3<f32> = cross(base2,dir);
    dir = vertexVC.xyz + offsetMC.x*base1 + offsetMC.y*base2;
    vertexVC = vec4<f32>(dir, 1.0);
    }
  else
    {
    // add in the offset
    var tmp2: vec2<f32> = vertexVC.xy + offsetMC;
    vertexVC = vec4<f32>(tmp2, vertexVC.zw);
    }
 
  output.vertexVC = vec4<f32>(vertexVC.xyz, 0.0);
 
  //VTK::Position::Impl
 
  return output;
}
`;
 
// ----------------------------------------------------------------------------
// vtkWebGPUSphereMapper methods
// ----------------------------------------------------------------------------
 
function vtkWebGPUSphereMapper(publicAPI, model) {
  // Set our className
  model.classHierarchy.push('vtkWebGPUSphereMapper');
 
  const cellMapperBuildPass = publicAPI.buildPass;
  publicAPI.buildPass = (prepass) => {
    if (prepass) {
      if (!model.renderable.getStatic()) {
        model.renderable.update();
      }
 
      const poly = model.renderable.getInputData();
 
      publicAPI.setCellArray(poly.getVerts());
      publicAPI.setCurrentInput(poly);
    }
    cellMapperBuildPass(prepass);
  };
 
  publicAPI.replaceShaderNormal = (hash, pipeline, vertexInput) => {
    const vDesc = pipeline.getShaderDescription('vertex');
    if (!vDesc.hasOutput('vertexVC')) vDesc.addOutput('vec4<f32>', 'vertexVC');
    vDesc.addOutput('vec3<f32>', 'centerVC');
    vDesc.addOutput('f32', 'radiusVC');
 
    const fDesc = pipeline.getShaderDescription('fragment');
    fDesc.addBuiltinOutput('f32', '@builtin(frag_depth) fragDepth');
    const sphereFrag = `
    // compute the eye position and unit direction
    var vertexVC: vec4<f32>;
    var EyePos: vec3<f32>;
    var EyeDir: vec3<f32>;
    var invertedDepth: f32 = 1.0;
    if (rendererUBO.cameraParallel != 0u) {
      EyePos = vec3<f32>(input.vertexVC.x, input.vertexVC.y, input.vertexVC.z + 3.0*input.radiusVC);
      EyeDir = vec3<f32>(0.0, 0.0, -1.0);
    }
    else {
      EyeDir = input.vertexVC.xyz;
      EyePos = vec3<f32>(0.0,0.0,0.0);
      var lengthED: f32 = length(EyeDir);
      EyeDir = normalize(EyeDir);
      // we adjust the EyePos to be closer if it is too far away
      // to prevent floating point precision noise
      if (lengthED > input.radiusVC*3.0) {
        EyePos = input.vertexVC.xyz - EyeDir*3.0*input.radiusVC;
      }
    }
 
    // translate to Sphere center
    EyePos = EyePos - input.centerVC;
    // scale to radius 1.0
    EyePos = EyePos * (1.0 / input.radiusVC);
    // find the intersection
    var b: f32 = 2.0*dot(EyePos,EyeDir);
    var c: f32 = dot(EyePos,EyePos) - 1.0;
    var d: f32 = b*b - 4.0*c;
    var normal: vec3<f32> = vec3<f32>(0.0,0.0,1.0);
    if (d < 0.0) { discard; }
    else {
      var t: f32 = (-b - invertedDepth*sqrt(d))*0.5;
 
      // compute the normal, for unit sphere this is just
      // the intersection point
      normal = invertedDepth*normalize(EyePos + t*EyeDir);
      // compute the intersection point in VC
      vertexVC = vec4<f32>(normal * input.radiusVC + input.centerVC, 1.0);
    }
    // compute the pixel's depth
    var pos: vec4<f32> = rendererUBO.VCPCMatrix * vertexVC;
    output.fragDepth = pos.z / pos.w;
    `;
 
    let code = fDesc.getCode();
    code = vtkWebGPUShaderCache.substitute(code, '//VTK::Normal::Impl', [
      sphereFrag,
    ]).result;
    fDesc.setCode(code);
  };
 
  publicAPI.replaceShaderPosition = (hash, pipeline, vertexInput) => {
    const vDesc = pipeline.getShaderDescription('vertex');
    vDesc.addBuiltinOutput('vec4<f32>', '@builtin(position) Position');
    let code = vDesc.getCode();
    code = vtkWebGPUShaderCache.substitute(code, '//VTK::Position::Impl', [
      '  output.Position = rendererUBO.VCPCMatrix*vertexVC;',
    ]).result;
    vDesc.setCode(code);
  };
 
  // compute a unique hash for a pipeline, this needs to be unique enough to
  // capture any pipeline code changes (which includes shader changes)
  // or vertex input changes/ bind groups/ etc
  publicAPI.computePipelineHash = () => {
    model.pipelineHash = 'spm';
    if (model.vertexInput.hasAttribute(`colorVI`)) {
      model.pipelineHash += `c`;
    }
    model.pipelineHash += model.renderEncoder.getPipelineHash();
  };
 
  publicAPI.updateBuffers = () => {
    const poly = model.currentInput;
 
    model.renderable.mapScalars(poly, 1.0);
 
    const points = poly.getPoints();
    const numPoints = points.getNumberOfPoints();
    const pointArray = points.getData();
 
    // default to one instance and computed number of verts
    publicAPI.setNumberOfInstances(1);
    publicAPI.setNumberOfVertices(3 * numPoints);
 
    const vertexInput = model.vertexInput;
 
    let hash = `spm${points.getMTime()}float32x3`;
    if (!model.device.getBufferManager().hasBuffer(hash)) {
      const buffRequest = {
        hash,
        usage: BufferUsage.RawVertex,
        format: 'float32x3',
      };
      // xyz v1 v2 v3
      const tmpVBO = new Float32Array(3 * numPoints * 3);
 
      let pointIdx = 0;
      let vboIdx = 0;
      for (let id = 0; id < numPoints; ++id) {
        pointIdx = id * 3;
        tmpVBO[vboIdx++] = pointArray[pointIdx];
        tmpVBO[vboIdx++] = pointArray[pointIdx + 1];
        tmpVBO[vboIdx++] = pointArray[pointIdx + 2];
        tmpVBO[vboIdx++] = pointArray[pointIdx];
        tmpVBO[vboIdx++] = pointArray[pointIdx + 1];
        tmpVBO[vboIdx++] = pointArray[pointIdx + 2];
        tmpVBO[vboIdx++] = pointArray[pointIdx];
        tmpVBO[vboIdx++] = pointArray[pointIdx + 1];
        tmpVBO[vboIdx++] = pointArray[pointIdx + 2];
      }
      buffRequest.nativeArray = tmpVBO;
      const buff = model.device.getBufferManager().getBuffer(buffRequest);
      vertexInput.addBuffer(buff, ['vertexBC']);
    }
 
    // compute offset VBO
    const pointData = poly.getPointData();
    let scales = null;
    if (
      model.renderable.getScaleArray() != null &&
      pointData.hasArray(model.renderable.getScaleArray())
    ) {
      scales = pointData.getArray(model.renderable.getScaleArray()).getData();
    }
 
    const defaultRadius = model.renderable.getRadius();
    if (scales || defaultRadius !== model._lastRadius) {
      hash = `spm${
        scales
          ? pointData.getArray(model.renderable.getScaleArray()).getMTime()
          : defaultRadius
      }float32x2`;
      if (!model.device.getBufferManager().hasBuffer(hash)) {
        const buffRequest = {
          hash,
          usage: BufferUsage.RawVertex,
          format: 'float32x2',
        };
        const tmpVBO = new Float32Array(3 * numPoints * 2);
 
        const cos30 = Math.cos(vtkMath.radiansFromDegrees(30.0));
        let vboIdx = 0;
        for (let id = 0; id < numPoints; ++id) {
          let radius = model.renderable.getRadius();
          if (scales) {
            radius = scales[id] * model.renderable.getScaleFactor();
          }
          tmpVBO[vboIdx++] = -2.0 * radius * cos30;
          tmpVBO[vboIdx++] = -radius;
          tmpVBO[vboIdx++] = 2.0 * radius * cos30;
          tmpVBO[vboIdx++] = -radius;
          tmpVBO[vboIdx++] = 0.0;
          tmpVBO[vboIdx++] = 2.0 * radius;
        }
        buffRequest.nativeArray = tmpVBO;
        const buff = model.device.getBufferManager().getBuffer(buffRequest);
        vertexInput.addBuffer(buff, ['offsetMC']);
      }
      model._lastRadius = defaultRadius;
    }
 
    // deal with colors but only if modified
    let haveColors = false;
    if (model.renderable.getScalarVisibility()) {
      const c = model.renderable.getColorMapColors();
      if (c) {
        hash = `spm${c.getMTime()}unorm8x4`;
        if (!model.device.getBufferManager().hasBuffer(hash)) {
          const buffRequest = {
            hash,
            usage: BufferUsage.RawVertex,
            format: 'unorm8x4',
          };
          const colorComponents = c.getNumberOfComponents();
          if (colorComponents !== 4) {
            vtkErrorMacro('this should be 4');
          }
          const tmpVBO = new Uint8ClampedArray(3 * numPoints * 4);
          let vboIdx = 0;
          const colorData = c.getData();
          for (let id = 0; id < numPoints; ++id) {
            const colorIdx = id * colorComponents;
            for (let v = 0; v < 3; v++) {
              tmpVBO[vboIdx++] = colorData[colorIdx];
              tmpVBO[vboIdx++] = colorData[colorIdx + 1];
              tmpVBO[vboIdx++] = colorData[colorIdx + 2];
              tmpVBO[vboIdx++] = colorData[colorIdx + 3];
            }
          }
          buffRequest.nativeArray = tmpVBO;
          const buff = model.device.getBufferManager().getBuffer(buffRequest);
          vertexInput.addBuffer(buff, ['colorVI']);
        }
        haveColors = true;
      }
    }
    if (!haveColors) {
      vertexInput.removeBufferIfPresent('colorVI');
    }
 
    publicAPI.setTopology('triangle-list');
    publicAPI.updateUBO();
  };
}
 
// ----------------------------------------------------------------------------
// Object factory
// ----------------------------------------------------------------------------
 
const DEFAULT_VALUES = {};
 
// ----------------------------------------------------------------------------
 
export function extend(publicAPI, model, initialValues = {}) {
  Object.assign(model, DEFAULT_VALUES, initialValues);
 
  // Inheritance
  vtkWebGPUCellArrayMapper.extend(publicAPI, model, initialValues);
 
  publicAPI.setVertexShaderTemplate(vtkWebGPUSphereMapperVS);
 
  // Object methods
  vtkWebGPUSphereMapper(publicAPI, model);
 
  const sr = model.shaderReplacements;
  sr.set('replaceShaderPosition', publicAPI.replaceShaderPosition);
  sr.set('replaceShaderNormal', publicAPI.replaceShaderNormal);
}
 
// ----------------------------------------------------------------------------
 
export const newInstance = macro.newInstance(extend, 'vtkWebGPUSphereMapper');
 
// ----------------------------------------------------------------------------
 
export default { newInstance, extend };
 
// Register ourself to WebGPU backend if imported
registerOverride('vtkSphereMapper', newInstance);