The Superquadric source can be used to add a polygonal superquadric to the 3D scene. This source can be used to create a wide variety of shapes (e.g., a sphere, a box, or a torus) by adjusting the roundness parameters. The output of the Superquadric source is polygonal data with point normals and texture coordinates defined.

## Data Descriptors¶

Center

This property specifies the 3D coordinates of the center of the superquadric.

PhiResolution

The value of this property represents the number of divisions in the phi (latitudinal) direction. This number will be rounded to the nearest multiple of 4.

PhiRoundness

This property defines the roundness in the phi (latitudinal) direction. A value of 0 represents a rectangular shape, a value of 1 represents a circular shape, and values greater than 1 produce higher order shapes.

Scale

The three values in this property are used to scale the superquadric in X, Y, and Z. The surface normals will be computed correctly even with anisotropic scaling.

Size

The value of this property represents the isotropic size of the superquadric. Note that both the Size and Thickness properties control coefficients of superquadric generation, so the value of this property may not exactly describe the size of the superquadric.

ThetaResolution

The value of this property represents the number of divisions in the theta (longitudinal) direction. This value will be rounded to the nearest multiple of 8.

ThetaRoundness

This property defines the roundness of the superquadric in the theta (longitudinal) direction. A value of 0 represents a rectangular shape, a value of 1 represents a circular shape, and values greater than 1 produce higher order shapes.

Thickness

If the value of the Toroidal property is 1, this value represents the thickness of the superquadric as a value between 0 and 1. A value close to 0 leads to a thin object with a large hole, and a value near 1 leads to a thick object with a very small hole. Changing the thickness does not change the outer radius of the superquadric.

Toroidal

If the value of this property is 0, the generated superquadric will not contain a hole (i.e., the superquadric will be ellipsoidal). Otherwise, a toroidal object is generated.

### Data Descriptors inherited from Proxy¶

__dict__

dictionary for instance variables (if defined)

__weakref__

list of weak references to the object (if defined)

## Methods¶

Initialize = aInitialize(self, connection=None, update=True)

### Methods inherited from SourceProxy¶

FileNameChanged(self)

Called when the filename of a source proxy is changed.

GetCellDataInformation(self)

Returns the associated cell data information.

GetDataInformation(self, idx=None)

This method returns a DataInformation wrapper around a vtkPVDataInformation

GetFieldDataInformation(self)

Returns the associated cell data information.

GetPointDataInformation(self)

Returns the associated point data information.

UpdatePipeline(self, time=None)

This method updates the server-side VTK pipeline and the associated data information. Make sure to update a source to validate the output meta-data.

UpdatePipelineInformation(self)

This method updates the meta-data of the server-side VTK pipeline and the associated information properties

__getitem__(self, idx)

Given a slice, int or string, returns the corresponding output port

### Methods inherited from Proxy¶

GetProperty(self, name)

Given a property name, returns the property object.

GetPropertyValue(self, name)

Returns a scalar for properties with 1 elements, the property itself for vectors.

InitializeFromProxy(self, aProxy, update=True)

Constructor. Assigns proxy to self.SMProxy, updates the server object as well as register the proxy in _pyproxies dictionary.

ListProperties(self)

Returns a list of all property names on this proxy.

SetPropertyWithName(self, pname, arg)

Generic method for setting the value of a property.

__del__(self)

Destructor. Cleans up all observers as well as remove the proxy from the _pyproxies dictionary

__eq__(self, other)

Returns true if the underlying SMProxies are the same.

__getattr__(self, name)

With the exception of a few overloaded methods, returns the SMProxy method

__hash__(self)

Return hash(self).

__init__(self, **args)

Default constructor. It can be used to initialize properties by passing keyword arguments where the key is the name of the property. In addition registrationGroup and registrationName (optional) can be specified (as keyword arguments) to automatically register the proxy with the proxy manager.

__iter__(self)

Creates an iterator for the properties.

__ne__(self, other)

Returns false if the underlying SMProxies are the same.

__setattr__(self, name, value)

Implement setattr(self, name, value).