CardinalSpline1D

Introduction

vtkCardinalSpline1D provides methods for creating a 1D cubic spline object
from given parameters, and allows for the calculation of the spline value and
derivative at any given point inside the spline intervals.

Methods

computeCloseCoefficients

Argument Type Required Description
size Number Yes
work Float32Array Yes
x Vector3 Yes
y Vector3 Yes

computeOpenCoefficients

Argument Type Required Description
size Number Yes
work Float32Array Yes
x Vector3 Yes
y Vector3 Yes
options Object Yes
options.leftConstraint BoundaryCondition Yes
options.leftValue Number Yes
options.rightConstraint BoundaryCondition Yes
options.rightValue Number Yes

extend

Method used to decorate a given object (publicAPI+model) with vtkCardinalSpline1D characteristics.

Argument Type Required Description
publicAPI Yes object on which methods will be bounds (public)
model Yes object on which data structure will be bounds (protected)
initialValues ICardinalSpline1DInitialValues No (default: {})

getValue

Argument Type Required Description
intervalIndex Number Yes
t Number Yes

newInstance

Method used to create a new instance of vtkCardinalSpline1D.

Argument Type Required Description
initialValues ICardinalSpline1DInitialValues No for pre-setting some of its content

Source

index.d.ts
import { Vector3 } from '../../../types';
import vtkSpline1D, {
ISpline1DInitialValues,
BoundaryCondition,
} from '../Spline1D';

export interface ICardinalSpline1DInitialValues
extends ISpline1DInitialValues {}

export interface vtkCardinalSpline1D extends vtkSpline1D {
/**
*
* @param {Number} size
* @param {Float32Array} work
* @param {Vector3} x
* @param {Vector3} y
*/
computeCloseCoefficients(
size: number,
work: Float32Array,
x: Vector3,
y: Vector3
): void;

/**
*
* @param {Number} size
* @param {Float32Array} work
* @param {Vector3} x
* @param {Vector3} y
* @param {Object} options
* @param {BoundaryCondition} options.leftConstraint
* @param {Number} options.leftValue
* @param {BoundaryCondition} options.rightConstraint
* @param {Number} options.rightValue
*/
computeOpenCoefficients(
size: number,
work: Float32Array,
x: Vector3,
y: Vector3,
options: {
leftConstraint: BoundaryCondition;
leftValue: number;
rightConstraint: BoundaryCondition;
rightValue: Number;
}
): void;

/**
*
* @param {Number} intervalIndex
* @param {Number} t
*/
getValue(intervalIndex: number, t: number): number;
}

/**
* Method used to decorate a given object (publicAPI+model) with vtkCardinalSpline1D characteristics.
*
* @param publicAPI object on which methods will be bounds (public)
* @param model object on which data structure will be bounds (protected)
* @param {ICardinalSpline1DInitialValues} [initialValues] (default: {})
*/
export function extend(
publicAPI: object,
model: object,
initialValues?: ICardinalSpline1DInitialValues
): void;

/**
* Method used to create a new instance of vtkCardinalSpline1D.
* @param {ICardinalSpline1DInitialValues} [initialValues] for pre-setting some of its content
*/
export function newInstance(
initialValues?: ICardinalSpline1DInitialValues
): vtkCardinalSpline1D;

/**
* vtkCardinalSpline1D provides methods for creating a 1D cubic spline object
* from given parameters, and allows for the calculation of the spline value and
* derivative at any given point inside the spline intervals.
*/
export declare const vtkCardinalSpline1D: {
newInstance: typeof newInstance;
extend: typeof extend;
};
export default vtkCardinalSpline1D;
index.js
import macro from 'vtk.js/Sources/macros';
import vtkSpline1D from 'vtk.js/Sources/Common/DataModel/Spline1D';

import { BoundaryCondition } from 'vtk.js/Sources/Common/DataModel/Spline1D/Constants';

const VTK_EPSILON = 0.0001;

// ----------------------------------------------------------------------------
// vtkCardinalSpline1D methods
// ----------------------------------------------------------------------------

function vtkCardinalSpline1D(publicAPI, model) {
// Set our classname
model.classHierarchy.push('vtkCardinalSpline1D');

// --------------------------------------------------------------------------

publicAPI.computeCloseCoefficients = (size, work, x, y) => {
if (!model.coefficients || model.coefficients.length !== 4 * size) {
model.coefficients = new Float32Array(4 * size);
}
const N = size - 1;

for (let k = 1; k < N; k++) {
const xlk = x[k] - x[k - 1];
const xlkp = x[k + 1] - x[k];

model.coefficients[4 * k + 0] = xlkp;
model.coefficients[4 * k + 1] = 2 * (xlkp + xlk);
model.coefficients[4 * k + 2] = xlk;
work[k] =
3.0 *
((xlkp * (y[k] - y[k - 1])) / xlk + (xlk * (y[k + 1] - y[k])) / xlkp);
}

const xlk = x[N] - x[N - 1];
const xlkp = x[1] - x[0];

model.coefficients[4 * N + 0] = xlkp;
model.coefficients[4 * N + 1] = 2 * (xlkp + xlk);
model.coefficients[4 * N + 2] = xlk;
work[N] =
3 * ((xlkp * (y[N] - y[N - 1])) / xlk + (xlk * (y[1] - y[0])) / xlkp);

const aN = model.coefficients[4 * N + 0];
const bN = model.coefficients[4 * N + 1];
const cN = model.coefficients[4 * N + 2];
const dN = work[N];

// solve resulting set of equations.
model.coefficients[4 * 0 + 2] = 0;
work[0] = 0;
model.coefficients[4 * 0 + 3] = 1;

for (let k = 1; k <= N; k++) {
model.coefficients[4 * k + 1] -=
model.coefficients[4 * k + 0] * model.coefficients[4 * (k - 1) + 2];
model.coefficients[4 * k + 2] =
model.coefficients[4 * k + 2] / model.coefficients[4 * k + 1];
work[k] =
(work[k] - model.coefficients[4 * k + 0] * work[k - 1]) /
model.coefficients[4 * k + 1];
model.coefficients[4 * k + 3] =
(-model.coefficients[4 * k + 0] * model.coefficients[4 * (k - 1) + 3]) /
model.coefficients[4 * k + 1];
}

model.coefficients[4 * N + 0] = 1;
model.coefficients[4 * N + 1] = 0;

for (let k = N - 1; k > 0; k--) {
model.coefficients[4 * k + 0] =
model.coefficients[4 * k + 3] -
model.coefficients[4 * k + 2] * model.coefficients[4 * (k + 1) + 0];
model.coefficients[4 * k + 1] =
work[k] -
model.coefficients[4 * k + 2] * model.coefficients[4 * (k + 1) + 1];
}

work[0] =
(dN -
cN * model.coefficients[4 * 1 + 1] -
aN * model.coefficients[4 * (N - 1) + 1]) /
(bN +
cN * model.coefficients[4 * 1 + 0] +
aN * model.coefficients[4 * (N - 1) + 0]);
work[N] = work[0];

for (let k = 1; k < N; k++) {
work[k] =
model.coefficients[4 * k + 0] * work[N] + model.coefficients[4 * k + 1];
}

// the column vector work now contains the first
// derivative of the spline function at each joint.
// compute the coefficients of the cubic between
// each pair of joints.
for (let k = 0; k < N; k++) {
const b = x[k + 1] - x[k];
model.coefficients[4 * k + 0] = y[k];
model.coefficients[4 * k + 1] = work[k];
model.coefficients[4 * k + 2] =
(3 * (y[k + 1] - y[k])) / (b * b) - (work[k + 1] + 2 * work[k]) / b;
model.coefficients[4 * k + 3] =
(2 * (y[k] - y[k + 1])) / (b * b * b) +
(work[k + 1] + work[k]) / (b * b);
}

// the coefficients of a fictitious nth cubic
// are the same as the coefficients in the first interval
model.coefficients[4 * N + 0] = y[N];
model.coefficients[4 * N + 1] = work[N];
model.coefficients[4 * N + 2] = model.coefficients[4 * 0 + 2];
model.coefficients[4 * N + 3] = model.coefficients[4 * 0 + 3];
};

// --------------------------------------------------------------------------

publicAPI.computeOpenCoefficients = (size, work, x, y, options = {}) => {
if (!model.coefficients || model.coefficients.length !== 4 * size) {
model.coefficients = new Float32Array(4 * size);
}
const N = size - 1;
// develop constraint at leftmost point.
switch (options.leftConstraint) {
case BoundaryCondition.DERIVATIVE:
// desired slope at leftmost point is leftValue.
model.coefficients[4 * 0 + 1] = 1.0;
model.coefficients[4 * 0 + 2] = 0.0;
work[0] = options.leftValue;
break;
case BoundaryCondition.SECOND_DERIVATIVE:
// desired second derivative at leftmost point is leftValue.
model.coefficients[4 * 0 + 1] = 2.0;
model.coefficients[4 * 0 + 2] = 1.0;
work[0] =
3.0 * ((y[1] - y[0]) / (x[1] - x[0])) -
0.5 * (x[1] - x[0]) * options.leftValue;
break;
case BoundaryCondition.SECOND_DERIVATIVE_INTERIOR_POINT:
// desired second derivative at leftmost point is
// leftValue times second derivative at first interior point.
model.coefficients[4 * 0 + 1] = 2.0;

if (Math.abs(options.leftValue + 2) > VTK_EPSILON) {
model.coefficients[4 * 0 + 2] =
4.0 * ((0.5 + options.leftValue) / (2.0 + options.leftValue));
work[0] =
6.0 *
((1.0 + options.leftValue) / (2.0 + options.leftValue)) *
((y[1] - y[0]) / (x[1] - x[0]));
} else {
model.coefficients[4 * 0 + 2] = 0;
work[0] = 0;
}
break;
case BoundaryCondition.DEFAULT:
default:
// desired slope at leftmost point is derivative from two points
model.coefficients[4 * 0 + 1] = 1.0;
model.coefficients[4 * 0 + 2] = 0.0;
work[0] = y[2] - y[0];
break;
}

for (let k = 1; k < N; k++) {
const xlk = x[k] - x[k - 1];
const xlkp = x[k + 1] - x[k];

model.coefficients[4 * k + 0] = xlkp;
model.coefficients[4 * k + 1] = 2 * (xlkp + xlk);
model.coefficients[4 * k + 2] = xlk;
work[k] =
3.0 *
((xlkp * (y[k] - y[k - 1])) / xlk + (xlk * (y[k + 1] - y[k])) / xlkp);
}

// develop constraint at rightmost point.
switch (options.rightConstraint) {
case BoundaryCondition.DERIVATIVE:
// desired slope at rightmost point is rightValue
model.coefficients[4 * N + 0] = 0.0;
model.coefficients[4 * N + 1] = 1.0;
work[N] = options.rightValue;
break;
case BoundaryCondition.SECOND_DERIVATIVE:
// desired second derivative at rightmost point is rightValue.
model.coefficients[4 * N + 0] = 1.0;
model.coefficients[4 * N + 1] = 2.0;
work[N] =
3.0 * ((y[N] - y[N - 1]) / (x[N] - x[N - 1])) +
0.5 * (x[N] - x[N - 1]) * options.rightValue;
break;
case BoundaryCondition.SECOND_DERIVATIVE_INTERIOR_POINT:
// desired second derivative at rightmost point is
// rightValue times second derivative at last interior point.
model.coefficients[4 * N + 1] = 2.0;
if (Math.abs(options.rightValue + 2) > VTK_EPSILON) {
model.coefficients[4 * N + 0] =
4.0 * ((0.5 + options.rightValue) / (2.0 + options.rightValue));
work[N] =
6.0 *
((1.0 + options.rightValue) / (2.0 + options.rightValue)) *
((y[N] - y[size - 2]) / (x[N] - x[size - 2]));
} else {
model.coefficients[4 * N + 0] = 0;
work[N] = 0;
}
break;
case BoundaryCondition.DEFAULT:
default:
// desired slope at rightmost point is derivative from two points
model.coefficients[4 * N + 0] = 0.0;
model.coefficients[4 * N + 1] = 1.0;
work[N] = y[N] - y[N - 2];
break;
}

// solve resulting set of equations.
model.coefficients[4 * 0 + 2] /= model.coefficients[4 * 0 + 1];
work[0] /= model.coefficients[4 * N + 1];
model.coefficients[4 * N + 3] = 1;

for (let k = 1; k <= N; k++) {
model.coefficients[4 * k + 1] -=
model.coefficients[4 * k + 0] * model.coefficients[4 * (k - 1) + 2];
model.coefficients[4 * k + 2] /= model.coefficients[4 * k + 1];
work[k] =
(work[k] - model.coefficients[4 * k + 0] * work[k - 1]) /
model.coefficients[4 * k + 1];
}

for (let k = N - 1; k >= 0; k--) {
work[k] -= model.coefficients[4 * k + 2] * work[k + 1];
}

// the column vector work now contains the first
// derivative of the spline function at each joint.
// compute the coefficients of the cubic between
// each pair of joints.
for (let k = 0; k < N; k++) {
const b = x[k + 1] - x[k];
model.coefficients[4 * k + 0] = y[k];
model.coefficients[4 * k + 1] = work[k];
model.coefficients[4 * k + 2] =
(3 * (y[k + 1] - y[k])) / (b * b) - (work[k + 1] + 2 * work[k]) / b;
model.coefficients[4 * k + 3] =
(2 * (y[k] - y[k + 1])) / (b * b * b) +
(work[k + 1] + work[k]) / (b * b);
}

// the coefficients of a fictitious nth cubic
// are the same as the coefficients in the first interval
model.coefficients[4 * N + 0] = y[N];
model.coefficients[4 * N + 1] = work[N];
model.coefficients[4 * N + 2] = model.coefficients[4 * 0 + 2];
model.coefficients[4 * N + 3] = model.coefficients[4 * 0 + 3];
};

// --------------------------------------------------------------------------

publicAPI.getValue = (intervalIndex, t) => {
const t2 = t * t;
const t3 = t * t * t;

return (
model.coefficients[4 * intervalIndex + 3] * t3 +
model.coefficients[4 * intervalIndex + 2] * t2 +
model.coefficients[4 * intervalIndex + 1] * t +
model.coefficients[4 * intervalIndex + 0]
);
};
}

// ----------------------------------------------------------------------------
// Object factory
// ----------------------------------------------------------------------------

const DEFAULT_VALUES = {};

// ----------------------------------------------------------------------------

export function extend(publicAPI, model, initialValues = {}) {
Object.assign(model, DEFAULT_VALUES, initialValues);

vtkSpline1D.extend(publicAPI, model, initialValues);

// Build VTK API
macro.obj(publicAPI, model);
vtkCardinalSpline1D(publicAPI, model);
}

// ----------------------------------------------------------------------------

export const newInstance = macro.newInstance(extend, 'vtkCardinalSpline1D');

// ----------------------------------------------------------------------------

export default { newInstance, extend };